

Hop: analyzing solvent in molecular dynamics trajectories

	Release

	0.4.0

	Date

	Sep 20, 2018

This is a collection of python modules to analyze (primarily) water
behaviour in MD simulations. The idea is to find regions with a
density above a given threshold (hydration sites) and catalogue those
sites. Once this is done, one can analyze water movement in terms of
hops between those sites. The complicated solvation dynamics is thus
represented as a graph in which hydration sites are the nodes (or
vertices) and movements between sites are the edges.

Of course, it is also possible to look at the movement of other
particles such as ions or small molecules — one simply selects a
different species.

The package is called Hop (no clever acronym, just quick to type,
and reflecting the fact that a “hopping analysis” is performed).

Hop is built with MDAnalysis [https://www.mdanalysis.org].

Warning

This is legacy software that is provided “AS IS”. In
particular, there are currently no tests and it is not
guaranteed to work or produce correct results. Help and
contributions are welcome!

License

hop is released under the GNU General Public License, v3 [https://www.gnu.org/licenses/gpl-3.0.en.html] (because
it links to MDAnalysis [https://www.mdanalysis.org], which is GPL licensed).

Documentation

The primary documentation consists of the online docs [https://hop.readthedocs.io] (which you
are reading).

There is also some content in the doc/ directory, in particular
doc/overview.txt.

Bug reporting

Almost invariably, things will not work right away or it will be
unclear how to accomplish a certain task. In order to keep track of
feedback I ask you to use the Issue tracker at https://github.com/Becksteinlab/hop/issues

Citing

If you use Hop in published work please cite (for the time being) the abstract
[Hop2009] and the MDAnalysis paper (because Hop is built on top of MDAnalysis)
[MDAnalysis2011]. Thanks!

	Hop2009

	Oliver Beckstein, Naveen Michaud-Agrawal and Thomas B.
Woolf. Quantitative Analysis of Water Dynamics in and near
Proteins. Biophysical Journal 96 (2009), 601a.
doi:10.1016/j.bpj.2008.12.3147

	MDAnalysis2011

	N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics
Simulations. J. Comput. Chem. 32 (2011), 2319–2327, doi:10.1002/jcc.21787

Contents

	1. Installation

	2. Background

	3. Quickstart: using the hop package — hop.interactive

	4. Hop package — hop

Indices and tables

	Index

	Module Index

	Search Page

1. Installation

Warning

This is legacy research code. It might not work at all. Use at your
own risk. Feedback is very welcome through the issue tracker [https://github.com/becksteinlab/hop/issues].

Note

Only Python 2.7 is currently supported.

1.1. Source installation

At the moment, only source installation is supported. Use pip [https://pip.pypa.io]. Download the
tarball from https://github.com/Becksteinlab/hop/releases or do a
web-install (choose the appropriate URL!):

pip install https://github.com/Becksteinlab/hop/archive/release-0.4.0.tar.gz

(This will also install all dependencies.)

1.2. Conda

At the moment, we do not have a conda [https://conda.io/docs/] package. However, it is easy to
set up a working environment for hop and then do the install
from source described above.

conda create -c conda-forge -n hop python=2.7 numpy scipy networkx MDAnalysis matplotlib pygraphviz GridDataFormats
source activate hop
pip install https://github.com/Becksteinlab/hop/archive/release-0.4.0.tar.gz

You can then run all the hop-* scripts in this environment. (Exit
the environment as usual with source deactivate.)

2. Background

hop is a collection of Python modules to analyze solvent
dynamics in molecular dynamics (MD) simulations. It generates a
spatially and temporally coarse grained representation of the dynamics
in terms of a hopping graph.

The idea is to first find regions with a density above a given
threshold and catalogue those sites (for water, these would be
hydration sites, for other solvent molecules simply high density
locations) . Once this is done, one can analyze water movement in
terms of hops between those sites. The complicated solvation
dynamics is thus represented as a hopping graph in which hydration
sites are the nodes (or vertices) and movements between sites are the
edges.

However, in principle one is not restricted to using high density
sites. Any geometric partition of space can be used (such as “inside”
and “outside” of a binding site to measure exchange with a binding
site and derive on/off rate constants or “periplasmic” and “cytosolic”
side of a membrane to derive permeation rates through a channel).

3. Quickstart: using the hop package — hop.interactive

A typical session starts with a trajectory (which should have been
RMS-fitted to a reference structure). Any topology and trajectory file
suitable for MDAnalysis [https://www.mdanalysis.org] can be used such as PSF+DCD, PDB+XTC or a
single PDB. In the following Charmm/NAMD psf and dcd files are used as
examples.

We will use the high-level wrapper functions in hop.interactive:

>>> import hop
>>> from hop.interactive import (make_density, analyze_density,
... make_hoppingtraj, build_hoppinggraph)

3.1. Hydration sites

Hydration sites are sites of water density higher than the bulk
density but one special site is the bulk. The hydration sites and the
bulk site are computed in two separate steps.

3.1.1. High density sites

First build the density of the water oxygens.

>>> density = make_density(psf,dcd,filename,delta=1.0)

The density is also saved as a pickled python object so that one can
easily reload it. The density is also exported as a dx file for
visualization (e.g. use hop.interactive.visualize_density(),
which calls VMD).

From the density one creates the site map for a given threshold (by
default this is a multiple of the water bulk density):

>>> density.map_sites(threshold=2.72)

Experiment with the threshold; hop.analysis.DensityAnalysis can help
to systematically explore the parameter space, and it is also helpful
to load the density into a visualization software such as VMD and
interactively explore contour levels. Values between 1.65 and 3 have
given decent results in the past but this is system-dependent.)

3.1.2. Bulk site

For a full analysis of hopping events one also needs to define a bulk
site. This is currently accomplished by calculating a second bulk
density (all water not within 3.5 Å of the protein) and manually
inserting the bulk site into the site map for the first density.

>>> density_bulk = make_density(psf,dcd,'bulk',delta=1.0,
... atomselection='name OH2',
... soluteselection='protein and not name H*',
... cutoff=3.5
...)

Using VMD’s VolMap can be potentially be faster — try it if the
default seems too slow to you:

>>> density_bulk = make_density(psf,dcd,'bulk',delta=1.0,
... atomselection='name OH2 and not within 3.5 of (protein and name not hydrogen)',
... backend='VMD',load_new=False)

The bulk density should be a big, well defined volume so we choose a
fairly low threshold:

>>> density_bulk.map_sites(0.6)

Add the biggest bulk site:

>>> density.site_insert_bulk(density_bulk)
>>> density.save()
>>> del density_bulk

Note

Behind the scenes, the bulk is simply prepended to the list
of all sites (hop.sitemap.Density.sites), found so far. By
convention the site at position 1 in the list of all sites is
treated specially in many parts of hop (it has the so-called
sitelabel “1”, which is simply the position in the list of sites)
and hence you might encounter unexpected behaviour later if you do
not insert a bulk site.

Statistics about the sites can be produced with

>>> analyze_density(density,figname)

The results figures will be named <figname>.pdf.

3.1.3. Remapping for comparing site maps

This section is only relevant if you plan on comparing site maps. Then
you must compare the density to your reference density now before
proceeding. You will

	remap this density to be defined on the same grid as the reference
density (for this to work, this density must have been generated from
a trajectory that has been RMS-fitted to the same reference structure
as; see hop.trajectory.rms_fit_trj() and
hop.trajectory.fasta2select())

>>> ref_density = hop.sitemap.Density(filename='my_reference_density')
>>> remapped_density = hop.sitemap.remap_density(density,ref_density)

	find the equivalence sites in the two densities and add those sites
to both densities:

>>> remapped_density.find_equivalence_sites_with(ref_density,verbosity=3)
>>> remapped_density.save(<filename>)
>>> ref_density.save()

(You must also recalculate the reference densities hopping
trajectory (see below) because some sites may have been merged into
‘equivalence sites’. See docs for
hop.sitemap.find_equivalence_sites_with() and
hop.graph.CombinedGraph()).

From now on, work with the remapped density:
>>> density = remapped_density

3.2. Hopping trajectory

Next we translate the dcd into a ‘hopping trajectory’ (saved in dcd
format) in which coordinates for a given water oxygen are replaced by
the site it visits at each time step.

>>> hops = make_hoppingtraj(density,'hop_water+bulk')

All further analysis should use this hopping trajectory (from disk) as
it is computationally much cheaper to read the trajectory than to
re-translate the coordinate trajectory (which is done behind the
scences if the hopping trajectory is not available).

3.3. Hopping graph

The final step is to map out the graph of transitions between sites
(using the hopping trajectory):

>>> tn = build_hoppinggraph(hops,density)

tn.hopgraph holds this graph (tn.graph just contains all jumps
including the interstitial and off-sites). The edges of hopgraph are
the rate constants k_ji (in 1/ps) for hops i –> j. They are computed
from an exponential fit to the site survival function S_ji(t) for
particles waiting to hop from i to j.

The density is provided to attach data to the nodes of the
hopgraph. It is required for visualization and analysis (although not
strictly necessary for the hopgraph itself).

Further analysis uses tn.hopgraph:

>>> h = tn.hopgraph # main result is the 'hopgraph'
>>> h.save('hopgraph') # save the hopping graph (necessary for cg part)
>>> h.filter(exclude={'outliers':True, 'Nmin':2, 'unconnected':True})
>>> h.show_rates() # show all calculated rate constants (filtered graph)
>>> h.plot_fits(xrange(301)) # plot rate constant fits for t=0ps to 300ps
>>> h.plot_fits()
>>> h.export('water') # write dot file to visualize (filtered) graph

To compare the water network based on density with another hop graph
(based on ref_density), construct the CombinedGraph:

>>> h_ref = hop.graph.HoppingGraph(filename=<filename>) --- basically repeat steps from
--- ref_density only with different labels
>>> cg = hop.graph.CombinedGraph(g0=h,g1=h_ref)
>>> cg.plot(0,'cg_h',linewidths=(0.01,))
>>> cg.plot(1,'cg_h_ref',linewidths=(0.01,))

3.4. Other topics

The following topics are not fully documented but the individual
functions and classes contain some hints on how to make them work for
the purposes outlined below:

	Remapping densities to a reference density (see hop.sitemap.remap_density()).

	Comparing densities and finding equivalence sites (see
hop.sitemap.find_common_sites() and hop.sitemap.Density.find_equivalence_sites_with()).

	Comparing hopgraphs across different simulations: requires equivalence sites in
both densities; then build the hop.graph.CombinedGraph.

3.5. Functions

	
hop.interactive.analyze_density(density, figure='sitestats')

	Site statistics based on the density alone.

Plots site volumes, average densities and occupancy, and writes it to the
pdf file <figure>.pdf

	
hop.interactive.build_hoppinggraph(hoppingtrajectory, density)

	Compute the graph of all site hops and calculate the rate constants.

tgraph = build_hoppinggraph(hops,density)

	Arguments

	

	hops

	hop.trajectory.HoppingTrajectory object

	density

	hop.sitemap.Density object

	Returns

	tgraph, a hop.graph.TransportNetwork object

	
hop.interactive.build_hoppinggraph_fromfiles(hoppingtrajectory_filename, density_filename)

	Compute the TransportNetwork including HoppingGraph from files.

tn = build_hoppinggraph_fromfiles(‘hoptraj’,’water_density’)

Input:
hoppingtrajectory_filename filename for HoppingTrajectory psf and dcd
density_filename filename for pickled Density

Output:
tn hop.graph.TransportNetwork object (qv)

	
hop.interactive.generate_densities(*args, **kwargs)

	Analyze the trajectory and generate solvent and bulk density.

generate_densities(topol, traj, atomselection=’name OW’) –> densities

This function can take a long time because it has to read the whole
trajectory. Progress is printed to the screen. It saves results to pickle
files. These files are hop.sitemap.Density objects and can be used
to instantiate such a density object.

	Arguments

	
	filename

	name of the solvent density with bulk site

	bulkname

	bulk density

	density_unit

	unit of measurement for densities and thresholds
(Molar, nm^{-3}, Angstrom^{-3}, water, SPC, TIP3P, TIP4P)

	solvent_thresholdexp(1) = 2.7182818284590451

	hydration sites when density > this threshold

	bulk_thresholdexp(-0.5) = 0.60653065971263342

	bulk site are regions with density > this threshold
(and water farther away from the protein heavy atoms than cutoff)

	delta1.0

	cubic grid size in Angstrom

	cutoff

	bulk-water is assumed to start at this distance from the
soluteselection

	soluteselection“protein and not name H*”

	how to select the solute (for bulk density)

	Returns

	a dict containing hop.sitemap.Density instances for the
the “solvent” and the “bulk” density; the “solvent” has the bulk
site (largest site in “bulk”) inserted as site 1.

Note

The “solvent” density is going to be used throughout the rest of the
protocol. Should you ever remap the sites (i.e. run
map_sites() with a different threshold) then
you must insert the bulk site again (because the bulk site is
removed for technical reasons whenever the sites change); use the saved
bulk site and the hop.sitemap.Density.site_insert_bulk() method.

See also

Keyword arguments are passed on to hop.density.DensityCreator
where all possible keywords are documented; the site mapping is done
with hop.sitemap.Density.map_sites().

	
hop.interactive.hopgraph_basic_analysis(h, density, filename)

	Do some simple analysis tasks on the hopgraph.

hopgraph_basic_analysis(h, density, filename)

	Arguments

	
	h

	hopgraph, a hop.graph.HoppingGraph

	density

	density, a hop.sitemap.Density

	filename

	default filename for generated files; all files and new
directories are written in the directory pointed to by the
path component

	
hop.interactive.make_density(psf, dcd, filename, delta=1.0, atomselection='name OH2', **kwargs)

	Build the density by histogramming all the water oxygens in a dcd.

density = make_density(psf,dcd,filename,delta=1.0)

The function builds the density object, writes it to disk, and
also exports it as a dx file for visualization (use
vizualize_density(density)).

	Arguments

	
	*psf

	topology

	dcd

	trajectory (should be RMS fitted to a reference frame)

	filename

	default filename for the density

	delta

	grid spacing Angstrom

	kwargs:

	
	padding

	increase box dimensions for 3D histogramming by padding

soluteselection
cutoff

for bulk density: setting both soluteselection=’protein and not name H*’
and cutoff=3.5 A selects ‘<atomsel> NOT WITHIN <cutoff> OF <solutesel>’

	Returns

	density, hop.sitemap.Density object; the density is
converted to a fraction of the density of bulk TIP3P water

	
hop.interactive.make_hoppingtraj(density, filename, **hopargs)

	Create the hopping trajectory from a density with a site map.

hops = make_hoptraj(density,filename)

	Arguments

	
	density

	density object with a site map

	filename

	prefix for the hop trajectory files (psf and dcd)

	hopargs

	keyword args to add to HoppingTrajectory such
as fixtrajectory = {‘delta’:10.22741474887299}

This function relies on the density’s metadata. In particular it
uses density.metadata[‘psf’] and metadata[‘dcd’] to find its input
data and metadata[‘atomselection’] to define the atoms to track.

	
hop.interactive.make_xstal_density(pdb, filename, **kwargs)

	Generate a density from the crystalwaters in a PDB.

For arguments see make_density().

(These water are typically named HOH.)

See also

Water molecules are counted as point-like
particles. One can also use
hop.sitemap.BfactorDensityCreator to broaden water
molecules according to their B-factor.

	
hop.interactive.visualize_density(density)

	Visualize the trajectory with the density in VMD.

visualize_density(density)

	Arguments

	
	density

	hop.sitemap.Density object

4. Hop package — hop

	4.1. Generating a hopping graph

	4.2. Analyzing hopping graphs and densities

	4.3. Markov Chain Monte Carlo sampling on a hop graph

	4.4. Auxiliary modules

4.1. Generating a hopping graph

	4.1.1. Defining solvation sites — hop.sitemap

	4.1.2. Generating densities from trajectories — hop.density

	4.1.3. Using qhull to define regions for hopping analysis — hop.qhull

	4.1.4. Generating the hopping trajectory — hop.trajectory

	4.1.5. Generating and analyzing a hopping graph — hop.graph

4.1.1. Defining solvation sites — hop.sitemap

Histogram positions of particles from a MD trajectory on a
grid. Calculate the density, change units (both of the grid and of the
density), save the density, export into 3D visualization formats,
manipulate the density as a numpy array.

	
class hop.sitemap.Density(grid=None, edges=None, filename=None, dxfile=None, parameters=None, unit=None, metadata=None)

	Class with an annotated density, i.e. additional information
for each grid cell. Adds information about sites to the grid. A
‘site’ consists of all connected grid cells with a density >=
threshold.

A site is defined as a set of at least ‘MINsite’ grid cells with
density >= threshold that are located in each others’ first and
second nearest neighbour shell (of 26 cells, on the cubic
lattice). A site is labelled by an integer 1..N. The interstitial
is labelled ‘0’. By default, a site may consist of a single grid
cell (MINsite == 1) but this can be changed by setting the
parameter MINsite to another number >1.

When neither grid nor edges are given then the density object can
also be read from a pickled file (filename) or a OpenDX file
(dxfile). In the latter case, care should be taken to properly set
up the units and the isDensity parameter:

>>> g = Density(dxfile='bulk.dx',parameters={'isDensity':True,'MINsite':1},
 unit={'length':'Angstrom','density':'Angstrom^{-3}'},)

Attributes:

grid density on a grid
edges the lower and upper edges of the grid cells along the

three dimensions of the grid

map grid with cells labeled as sites (after label_sites())
sites list of sites: site 0 is the interstitial, then follows

the largest site, and then sites in decreasing order.
Each site is a list of tuples. Each tuple is the index
(i,j,k) into the map or grid.

graph NetworkX graph of the cells

unit physical units of various components
P (default) values of parameters

Methods:

	map_sites(threshold)

	label all sites, defined by the threshold. The threshold
value is stored with the object as the default. The default
can be explicitly set as P[‘threshold’]

save(filename) save object.pickle
load(filename) restore object.pickle (or use d=Density(filename=<filename>))
export() write density to a file for visualization
export_map() write individual sites

Adds information about sites to the grid. Sites are all
cells with a density >= threshold.

density = Density(kargs**)

Sets up a Grid with additional data, namely the site map The
threshold is given as key-value pair in the parameters
dictionary and is assumed to be in the same units as the
density.

If the input grid is a histogram then it is transformed into a
density.

When neither grid nor edges are given then the density object
can also be read from a pickled file (filename) or a OpenDX
file (dxfile). In the latter case, care should be taken to
properly set up the units and the isDensity parameter if the
dx file is a density:

>>> g = Density(dxfile='bulk.dx',parameters={'isDensity':True},
 unit={'length':'Angstrom','density':'Angstrom^{-3}'},)

	
export3D(filename=None, site_labels='default')

	Export pdb and psf file of site centres for interactive visualization.

>>> density.export3D()

	Arguments

	

	filename prefix for output files:

	<filename>.psf, <filename>.pdb, and <filename>.vmd

site_labels selects sites (See site_labels())

The method writes a psf and a pdb file from the site map,
suitable for visualization in, for instance, VMD. In addition,
a VMD tcl file is produced. When it is sourced in VMD then the
psf and pdb are loaded and site labels are shown next to the sites.

Sites are represented as residues of resname ‘NOD’; each site
is marked by one ‘ATOM’ (of type CA) at the center of geometry
of the site.

Bulk and interstitial are always filtered from the list of
sites because they do not have a well defined center.

	
export_map(labels='default', format='dx', directory=None, value='density', combined=False, verbosity=3)

	Write sites as a density file for visualization.

export_map(**kwargs)

	labels=’default’ Select the sites that should be exported. Can be

	a list of numbers (site labels) or one of the keywords
recognized by site_labels() (qv). The interstitial is
always excluded.

	combined=False True: write one file. False: write one file for each

	site.

format=’dx’ Only dx format supported
directory=’site_maps’

Files are created in new directory, ‘site_maps’ by
default. File names are generated and indexed with
the label of the site. By default, ‘site_maps’ is
located in the same directory as the default filename.

	value= ‘density’ Writes the actual density in the site.

	
	‘threshold’ The densities have the threshold value wherever the

	site is defined. Note that the interstitial (label = 0)
is also written.

<float> Writes the value <float> into the site.

verbosity=3 Set to 0 to disable status messages.

Quick hack to write out sites. Each site can be written as a
separate density file (combined=False) so that one can distinguish them
easily in say VMD. Display with

vmd site_maps/*.dx

	
find_equivalence_sites_with(reference, fmt='%d*', update_reference=True, use_ref_equivalencesites=False, verbosity=0, equivalence_graph='equivalence_graph.png')

	Find overlapping sites with a reference density and update site descriptions.

Density.find_equivalence_sites_with(ref)

	Arguments

	

ref a Density object defined on the same grid
fmt python format string used for the equivalent_name, which should

contain %d for the reference label number (max 10 chars)
(but see below for magical use of xray water names)

	update_reference

	True (default): Also update the site_properties in the
reference so that one can make graphs that highlight the
common sites. (This is recommended.)
False: don’t change the reference

	use_ref_equivalencesites

	True: use sites + equivalence sites from the reference density
False*: remove all equivalence sites als from the ref density

	verbosity For verbosity >= 3 output some statistics; verbosity >=5 also

	returns the equivalence graph for analysis; verbosity >= 7
displays the graph (and saves to equivalence_graph.png).

An ‘equivalence site’ is a site that contains all sites that
overlap in real space with another site in the reference
density. This also means that two or more sites in one density
can become considered equivalent if they both overlap with a
larger site in the other density, and it is also possible that
one creates ‘equivalence’ chains (0,a) <-> (1,b) <-> (0,c) <->
(1,d) (although (0,a) ~<-> (1,d), and by construction (0,a) ~<->
(0,c) and (1,b) ~<-> (1,d)), leading to extensive equivalence
sites.

When hopping properties are computed, an equivalence site is
used instead of the individual sub sites.

The equivalence sites themselves are constructed as new sites
and added to the list of sites; their site numbers are
constructed by adding to the total number of existing
sites. Sub-sites are marked up by an entry of the equivalence
site’s site number in site_properties.equivalence_site.

The common sites are consecutively numbered, starting at 2,
from the one containing most sites to the one with fewest.

The method updates Density.site_properties.equivalent_name
with the new descriptor of the equivalent site. Equivalent
site names are consecutively numbered, starting at 2, and can
be optionally formatted with the fmt argument.

However, if the reference density was built from an X-ray density AND if
each site corresponds to single X-ray water molecule then the
equivalence names contain the water identifiers eg ‘W136’ or
‘W20_W34_W36’.

See the hop.sitemap.find_common_sites() function for more details.

	
has_bulk()

	Returns True if a bulk site has been inserted and False otherwise.

	
map_hilo(lomin=0.0, lomax=0.5, himin=2.72)

	Experimental mapping of low density sites together with high density ones.

	Keywords

	
	lomin

	low-density sites must have a density > lomin [0.0]

	lomax

	low-density sites must have a density < lomax [0.5]

	himin

	high-density sites must have a density > himin [2.72]

	
map_sites(threshold=None)

	Find regions of connected density and label them consecutively

map_sites([threshold=<threshold>])

	threshold Use the given threshold to generate the graph; the threshold

	is assumed to be in the same units as the density.
(This updates the Density object’s threshold value as well.)

The interstitial has label ‘0’, the largest connected subgraph
has ‘1’ etc. The sites (i.e.the list of indices into map/grid)
can be accesed as Density.sites[label].

	
masked_density(density, site_labels)

	Returns only that portion of density that corresponds to
sites; everything else is zeroed.

masked = masked_density(density,sites)

Arguments:

density a array commensurate with the map
site_labels label or list of site labels

Results:

Returns numpy array of same shape as input with non-site cells zeroed.

	
remove_equivalence_sites()

	Delete equivalence sites and recompute site map.

	
site_insert_bulk(bulkdensity, bulklabel=1, force=False)

	Insert a bulk site from a different density map as bulk site into this density.

site_insert_bulk(bulkdensity)

This is a bit of a hack. The idea is that one can use a site
from a different map (computed from the same trajectory with
the same grid!) and insert it into the current site map to
define a different functional region. Typically, the bulk site
is the largest site in bulkdensity (and has site label 1) but
if this is not the case manually choose the appropriate
bulklabel.

The site is always inserted as the bulk site in the current density.

Example:
>>> bulkdensity = hop.interactive.make_density(psf,dcd,’bulk’,delta=1.0,

atomselection=’name OH2 and not within 4.0 of protein’)

>>> bulkdensity.map_sites(threshold=0.6)
>>> density.site_insert_bulk(bulkdensity)
>>> density.save()
>>> del bulkdensity

	
site_insert_nobulk()

	Insert an empty bulk site for cases when this is convenient.

	
site_labels(include='default', exclude='default')

	Return a list of site labels, possibly filtered.

L = site_labels(include=<inclusions>,exclude=<exclusions>)

<inclusions> and <exclusions> consist of a list of site labels
(integers) and/or keywords that describe a site selection. All entries
in one list are logically ORed. All exclusions are then removed from
the inclusions and the final list of site labels is returned as a numpy
array. (As a special case, the argument need not be a list but can be a
single keyword or site label).

For convenience, some inclusions such as ‘subsites’ and
‘equivalencesites’ automatically remove themselves from the exclusions.

For standard use the defaults should do what you expect, i.e. only see
the sites that are relevant or that have been mapped in a hopping
trajectory.

Set verbosity to 10 in order to see the parsed selection.

	<inclusions>

	
	‘all’ all mapped sites, including bulk and subsites of

	equivalent sites (but read the NOTE below: set exclude=None)

	‘default’ all mapped sites, including bulk but excluding subsites

	and interstitial

	‘sites’ all mapped sites, excluding bulk and interstitial

	(removes ‘subsites’ and ‘equivalencesites’ from
exclusions)

‘subsites’ all sites that have been renamed or aggreated into equivalence sites
‘equivalencesites’

only the equivalence sites

int, list site label(s)

	<exclusions>

	
	‘default’ equivalent to [‘interstitial’,’subsites’]; always applied unless

	exludsions=None is set!

None do not apply any exclusions
‘interstitial’

exclude interstitial (almost no reason to
ever include it)

	‘subsites’ exclude sites that have been aggregated or

	simply renamed as equivalence sites

	‘equivalencesites’

	exclude equivalence sites (and possibly include subsites)

‘bulk’ exclude the bulk site

Provides the ordered list L of site labels, excluding sites listed in
the exclude list. Site labels are integers, starting from ‘0’ (the
interstitial). These labels are the index into the site_properties[]
and sites[] arrays.

NOTE that by default the standard exclusions are already being applied
to any ‘include’; if one really wants all sites one has to set
exclude=None.

Exclusions are applied _after_ inclusions.

‘site’ discards the bulk site, self.P[‘bulk_site’]; this parameter is
automatically set when adding the bulk site with site_insert_bulk().

See find_equivalence_sites_with() for more on equivalence sites and
subsites.

	
site_occupancy(**labelargs)

	Returns the labels and the average/stdev occupancy of the labeled site(s).

labels, <N>, std(N) = site_coocupancy(include=’all’ | <int> | <list>)

Average occupancy is the average number of water molecules on the site i:

<N_i> = <n_i> * V_i

where n_i is the average density of the site and V_i its volume.

The label selection arguments are directly passed to
site_labels() (see doc string).

If the interstitial is included then 0,0 is returned for the
interstitial site (so ignore those numbers).

	
site_remove_bulk(force=False)

	Cleanup bulk site.

	
site_volume(**labelargs)

	Returns the label(s) and volume(s) of the selected sites.

labels, volumes = site_volume(‘all’)

The volume is calculated in the unit set in
unit[‘length’]. The label selection arguments are directly
passed to site_labels() (see doc string).

The volume of the interstitial (if included) is returned as 0
(which is not correct but for technical reasons more
convenient).

	
stats(data=None)

	Statistics for the density (excludes bulk, interstitial, subsites).

d = stats([data=dict])

	
subsites_of(equivsites, kind='sitelabel')

	Return subsites of given equivalence sites as a dict.

dict <– subsites_of(equivsites,kind=’sitelabel’)

The dict is indexed by equivsite label. There is one list of subsites for
each equivsitelabel.

	kind ‘sitelabel’: equivsites are the sitelabels as uses internally; this is

	
the default because site_labels() returns these numbers and
so one can directly use the output from site_labels() as
input (see example)

	‘equivlabel’: equivsites are treated as labels of equivalence sites;

	these are integers N that typically start at 2

	‘name’: equivsites are treated as strings that are given as names

	to sites; the default settings produce something like ‘N*’

EXAMPLES:

dens.subsites_of(dens.site_labels(‘equivalencesites’))
dens.subsites_of([2,5,10], kind=’equivsites’)
dens.subsites_of(‘10*’, kind=’name’)

NOTE:
* equivlabel == 0 is silently filtered (it is used as a merker for NO equivalence

site)

	empty equivalence sites show up as empty entries in the output dict; typically
this means that one gave the wrong input or kind

	
class hop.sitemap.Grid(grid=None, edges=None, filename=None, dxfile=None, parameters=None, unit=None, metadata=None)

	Class to manage a multidimensional grid object.

The grid (Grid.grid) can be manipulated as a standard numpy
array. Changes can be saved to a file using the save() method. The
grid can be restored using the load() method or by supplying the
filename to the constructor.

The attribute Grid.metadata holds a user-defined dictionary that
can be used to annotate the data. It is saved with save().

The export(format=’dx’) method always exports a 3D object, the
rest should work for an array of any dimension.

Create a Grid object from data.

	From a numpy.histogramdd():

	g = Grid(grid,edges)

	From files (created with Grid.save(<filename>):

	g = Grid(filename=<filename>)

	From a dx file:

	g = Grid(dxfile=<dxfile>)

Arguments:

grid histogram or density and …
edges list of arrays, the lower and upper bin edges along the axes

(both are output by numpy.histogramdd())

	filename file name of a pickled Grid instance (created with

	Grid.save(filename))

dxfile OpenDX file
parameters dictionary of class parameters; saved with save()

	isDensity False: grid is a histogram with counts,

	True: a density.
Applying Grid.make_density() sets it to True.

	unit dict(length=’Angstrom’, density=None)

	length: physical unit of grid edges (Angstrom or nm)
density: unit of the density if isDensity == True or None

	metadata a user defined dictionary of arbitrary values

	associated with the density; the class does not touch
metadata[] but stores it with save()

Returns:
g a Grid object

If the input histogram consists of counts per cell then the
make_density() method converts the grid to a physical
density. For a probability density, divide it by grid.sum() or
use normed=True right away in histogramdd().

If grid, edges, AND filename are given then the
extension-stripped filename is stored as the default filename.

NOTE:

	It is suggested to construct the Grid object from a
histogram, to supply the appropriate length unit, and to use
make_density() to obtain a density. This ensures that the
length- and the density unit correspond to each other.

TODO:
* arg list is still messy
* probability density not supported as a unit

	
centers()

	Returns the coordinates of the centers of all grid cells as an iterator.

	
convert_density(unit='Angstrom^{-3}')

	Convert the density to the physical units given by unit

unit can be one of the following:

	name

	description of the unit

	Angstrom^{-3}

	particles/A**3

	nm^{-3}

	particles/nm**3

	SPC

	density of SPC water at standard conditions

	TIP3P

	… see MDAnalysis.units.water [https://www.mdanalysis.org/docs/documentation_pages/units.html#MDAnalysis.units.water]

	TIP4P

	… see MDAnalysis.units.water [https://www.mdanalysis.org/docs/documentation_pages/units.html#MDAnalysis.units.water]

	water

	density of real water at standard conditions (0.997 g/cm**3)

	Molar

	mol/l

	Note: (1) This only works if the initial length unit is provided.

	
	Conversions always go back to unity so there can be rounding
and floating point artifacts for multiple conversions.

There may be some undesirable cross-interactions with convert_length…

	
convert_length(unit='Angstrom')

	Convert Grid object to the new unit:

unit Angstrom, nm

This changes the edges but will not change the density; it is
the user’s responsibility to supply the appropriate unit if
the Grid object is constructed from a density. It is suggested
to start from a histogram and a length unit and use
make_density().

	
export(filename=None, format='dx')

	export density to file using the given format; use ‘dx’ for visualization.

export(filename=<filename>,format=<format>)

The <filename> can be omitted if a default file name already
exists for the object (e.g. if it was loaded from a file or it
was saved before.) Do not supply the filename extension. The
correct one will be added by the method.

The default format for export() is ‘dx’.

Only implemented formats:

dx OpenDX (WRITE ONLY)
python pickle (use Grid.load(filename) to restore); Grid.save()

is simpler than export(format=’python’).

	
importdx(dxfile)

	Initializes Grid from a OpenDX file.

	
make_density()

	Convert the grid (a histogram, counts in a cell) to a density (counts/volume).

make_density()

	Note: (1) This changes the grid irrevocably.

	
	For a probability density, manually divide by grid.sum().

	
hop.sitemap.find_common_sites(a, b, use_equivalencesites=None)

	Find sites that overlap in space in Density a and b.

m = find_common_sites(a,b)

	Arguments

	

a Density instance
b Density instance

	Returns

	

array of mappings between sites in a and b that overlap
m[:,0] site labels in a
m[:,1] site labels in b
dict(m) translates labels in a to labels in b
dict(m[:,[1,0]])

translates labels in b to labels in a

	
hop.sitemap.find_overlap_coeff(a, b)

	Find sites that overlap in space in Density a and b.

m = find_overlap_coeff(a,b)

	Arguments

	

a Density instance
b Density instance

	Returns

	

	array sites in a and b that overlap

	and array of probability of overlap for overlapped sites

m[:,0] site labels in a
m[:,1] site labels in b
oc amount of overlap

	
hop.sitemap.remap_density(density, ref, verbosity=0)

	Transform a Density object to a grid given by a reference Density.

>>> newdensity = remap_density(old,ref)

The user is repsonsible to guarantee that:
* the grid spacing is the same in both densities
* the grids only differ by a translation, not a rotation

	Arguments

	

old Density object with site map
ref reference Density object that provides the new grid shape
verbosity=0 increase to up to 3 for status and diagnostic messages

	Returns

	

	newdensity Density object with old’s density and site map transformed

	to ref’s coordinate system. It is now possible to manipulate
newdensity’s and ref’s arrays (grid and map) together, e.g.

>>> common = (newdensity.map > 1 & ref.map > 1)
>>> pairs = newdensity.map[common], ref.map[common]

Note that this function is not well implemented at the moment and
can take a considerable amount of time on bigger grids
(100x100x100 take about 3 Min).

An implicit assumption is that the two coordinate systems for the
two grids are parallel and are only offset by a translation. This
cannot be checked based on the available data and must be
guaranteed by the user. RMS-fitting the trajectories is sufficient
for this to hold.

BUGS:

	This is not a good way to do the remapping: It requires parallel
coordinate systems and the exact same delta.

	It is slow.

	It would be much better to interpolate density on the reference grid,

	
hop.sitemap.unique_tuplelist(x)

	Sort a list of tuples and remove all values None

4.1.2. Generating densities from trajectories — hop.density

As an input a trajectory is required that

	Has been centered on the protein of interest.

	Has all molecules made whole that have been broken across periodic
boundaries.

	Has the solvent molecules remap so that they are closest to the
solute (this is important when using funky unit cells such as
dodechedra or truncated octahedra).

4.1.2.1. Classes and functions

	
class hop.density.BfactorDensityCreator(pdb, delta=1.0, atomselection='resname HOH and name O', metadata=None, padding=1.0, sigma=None)

	Create a density grid from a pdb file using MDAnalysis.

dens = BfactorDensityCreator(psf,pdb,…).PDBDensity()

The main purpose of this function is to convert crystal waters in
an X-ray structure into a density so that one can compare the
experimental density with the one from molecular dynamics
trajectories. Because a pdb is a single snapshot, the density is
estimated by placing Gaussians of width sigma at the position of
all selected atoms.

Sigma can be fixed or taken from the B-factor field, in which case
sigma is taken as sqrt(3.*B/8.)/pi.

TODO:

	Make Gaussian convolution more efficient (at least for same
sigma) because right now it is VERY slow (which may be
acceptable if one only runs this once)

	Using a temporary Creator class with the PDBDensity() helper
method is clumsy (but was chosen as to keep the PDBDensity class
clean and __init__ compatible with Density).

See also

	MDAnalysis.analysis.density [https://www.mdanalysis.org/docs/documentation_pages/analysis/density.html#module-MDAnalysis.analysis.density]

	PDBDensity

Construct the density from psf and pdb and the atomselection.

	pdbstr

	PDB file or MDAnalysis.Universe;

	atomselectionstr

	selection string (MDAnalysis syntax) for the species to be analyzed

	deltafloat

	bin size for the density grid in Angstroem (same in x,y,z) [1.0]

	metadatadict

	dictionary of additional data to be saved with the object

	paddingfloat

	increase histogram dimensions by padding (on top of initial box size)

	sigmafloat

	width (in Angstrom) of the gaussians that are used to build up the
density; if None (the default) then uses B-factors from pdb

For assigning X-ray waters to MD densities one might have to use a sigma
of about 0.5 A to obtain a well-defined and resolved x-ray water density
that can be easily matched to a broader density distribution.

The following creates the density with the B-factors from the pdb file:

DC = BfactorDensityCreator(pdb, delta=1.0, atomselection="name HOH",
 padding=2, sigma=None)
density = DC.Density()

density_from_PDB() for a convenience function

	
PDBDensity(threshold=None)

	Returns a PDBDensity object.

The PDBDensity is a Density with a xray2psf translation table;
it has also got an empty bulk site inserted (so that any
further analysis which assumes that site number 1 is the bulk)
does not discard a valid site.

	threshold Use the given threshold to generate the graph; the threshold

	is assumed to be in the same units as the density.
None: choose defaults (1.0 if bfactors were used, 1.3 otherwise)

	
class hop.density.DensityCollector(name, universe, **kwargs)

	Collect subsequent coordinate frames to build up a Density.

	
class hop.density.PDBDensity(grid=None, edges=None, filename=None, dxfile=None, parameters=None, unit=None, metadata=None)

	Density with additional information about original crystal structure.

This is simply the Density class (see below) enhanced by the add_xray2psf(),
W(), and Wequiv() methods.

Note that later analysis often ignores the site with the bulknumber by default
so one should (after computing a site map) also insert an empty bulk site:

canonical way to build a PDBDensity
(builds the sitepa at threshold and inserts a pseudo bulk site)
xray = BfactorDensityCreator(…).PDBDensity(threshold)

rebuild site map
xray.map_sites(threshold) # map sites at density cutoff threshold
xray.site_insert_nobulk() # insert ‘fake’ bulk site at position SITELABEL[‘bulk’]

find X-ray waters that correspond to a site in another density Y:
(1) build the list of equivalence sites, using the x-ray density as reference
Y.find_equivalence_sites(xray) # also updates equiv-sites in xray!
(2) look at the matches in xray
xray.Wequiv() TODO: not working yet

Density Class

	Class with an annotated density, i.e. additional information

	for each grid cell. Adds information about sites to the grid. A
‘site’ consists of all connected grid cells with a density >=
threshold.

A site is defined as a set of at least ‘MINsite’ grid cells with
density >= threshold that are located in each others’ first and
second nearest neighbour shell (of 26 cells, on the cubic
lattice). A site is labelled by an integer 1..N. The interstitial
is labelled ‘0’. By default, a site may consist of a single grid
cell (MINsite == 1) but this can be changed by setting the
parameter MINsite to another number >1.

When neither grid nor edges are given then the density object can
also be read from a pickled file (filename) or a OpenDX file
(dxfile). In the latter case, care should be taken to properly set
up the units and the isDensity parameter:

>>> g = Density(dxfile='bulk.dx',parameters={'isDensity':True,'MINsite':1},
 unit={'length':'Angstrom','density':'Angstrom^{-3}'},)

Attributes:

grid density on a grid
edges the lower and upper edges of the grid cells along the

three dimensions of the grid

map grid with cells labeled as sites (after label_sites())
sites list of sites: site 0 is the interstitial, then follows

the largest site, and then sites in decreasing order.
Each site is a list of tuples. Each tuple is the index
(i,j,k) into the map or grid.

graph NetworkX graph of the cells

unit physical units of various components
P (default) values of parameters

Methods:

	map_sites(threshold)

	label all sites, defined by the threshold. The threshold
value is stored with the object as the default. The default
can be explicitly set as P[‘threshold’]

save(filename) save object.pickle
load(filename) restore object.pickle (or use d=Density(filename=<filename>))
export() write density to a file for visualization
export_map() write individual sites

Adds information about sites to the grid. Sites are all
cells with a density >= threshold.

density = Density(kargs**)

Sets up a Grid with additional data, namely the site map The
threshold is given as key-value pair in the parameters
dictionary and is assumed to be in the same units as the
density.

If the input grid is a histogram then it is transformed into a
density.

When neither grid nor edges are given then the density object
can also be read from a pickled file (filename) or a OpenDX
file (dxfile). In the latter case, care should be taken to
properly set up the units and the isDensity parameter if the
dx file is a density:

>>> g = Density(dxfile='bulk.dx',parameters={'isDensity':True},
 unit={'length':'Angstrom','density':'Angstrom^{-3}'},)

	
W(N, returntype='auto', format=False)

	Returns the resid of water N.

If returntype == ‘psf’ then N is interpreted as the resid in the
x-ray crystal structure (or original pdb file) and a resid N’ in the
psf is returned.

If returntype == ‘xray’ then N is a resid in the psf and the
corresponding crystal structure water is returned. This is
useful to label water molecules by their published identifier,
eg ‘W128’.

If the returntype is set to ‘auto’ and N starts with a W (eg
‘W128’) then it is assumed to be a crystal water and the
returntype is automatically set to psf, otherwise it acts like
‘xray’.

	Arguments

	

N resid of molecule (can be an iterable)
returntype ‘auto’ | ‘psf’ | ‘xray’
format False: return a integer number

True: default string (either “WN’” for x-ray or “#N’” for psf)
python format string: if the string contains %(resid)d then the string

will be used as a format, otherwise the bare number
is returned without raising an error

	
Wequiv(format=True)

	Return a list of the PDB resids of the equivalent sites.

array = Wequiv(format=True)

	format True: array of identifiers ‘Wnn’

	False: array of integers
string: python format string; %(resid)d is replaced

	
add_xray2psf(pdbfile, regex='\\s*W\\s*|HOH|WAT|.*TIP.*|.*SPC.*')

	Add translation table between sequential psf numbering and original pdb numbering for water.

D.add_xray2psf(pdbfilename)

The original pdb is read and all water molecules are sequentially mapped
to the water molecules in the psf (without any checks). The pdb is read
and analyzed using Bio.PDB.

pdbfilename Original crystallographic pdb file
regex extended regular expression to detect water residues

	
equivalence_sites(format=True)

	All equivalence sites (if defined) together with crystallographic water labels.

recarray <– equivalence_sites(self,format=True)

	The numpy.recarray has columns

	equivalence_label the integer label of the equivalence site
equivalence_name the name, a string
xray the identifier of the X-ray water

equivalence_label and equivalence_name are identical between the densities from
which the equivalence sites were computed. The xray identifier is specific for the
structure; by default it is a string such as ‘W135’.

	format True: print ‘W<N>’ identifier

	False: integer <N>
(see W() for more possibilities)

BUG: THIS IS NOT WORKING AS THOUGHT BECAUSE THERE IS NO 1-1
MAPPING BETWEEN WATER MOLECULES AND SITES AND BECAUSE SITES
ARE NOT NUMBERED IN THE SAME ORDER AS THE WATER MOLECULES

TODO: The proper way to do this is to find all water molecules
within a cutoff of each grid cell that belongs to a site and
then store all the waters as the string name of the site.

	
site2resid(sitelabel)

	Returns the resid of the particle that provided the density for the site.

	
site_insert_nobulk()

	Insert an empty bulk site for cases when this is convenient.

	
hop.density.density_from_Universe(*args, **kwargs)

	Create a hop.sitemap.Density from a :class:`Universe.

See also

MDAnalysis.analysis.density.density_from_Universe() [https://www.mdanalysis.org/docs/documentation_pages/analysis/density.html#MDAnalysis.analysis.density.density_from_Universe] for
all parameters and density_from_trajectory() for a
convenience wrapper.

	
hop.density.density_from_trajectory(*args, **kwargs)

	Create a density grid from a trajectory.

density_from_trajectory(PSF, DCD, delta=1.0, atomselection=’name OH2’, …) –> density

or

density_from_trajectory(PDB, XTC, delta=1.0, atomselection=’name OH2’, …) –> density

	Arguments

	
	psf/pdb/gro

	topology file

	dcd/xtc/trr/pdb

	trajectory; if reading a single PDB file it is sufficient to just provide it
once as a single argument

	Keywords

	
	atomselection

	selection string (MDAnalysis syntax) for the species to be analyzed
[“name OH2”]

	delta

	approximate bin size for the density grid in Angstroem (same in x,y,z)
(It is slightly adjusted when the box length is not an integer multiple
of delta.) [1.0]

	metadata

	dictionary of additional data to be saved with the object

	padding

	increase histogram dimensions by padding (on top of initial box size)
in Angstroem [2.0]

	soluteselection

	MDAnalysis selection for the solute, e.g. “protein” [None]

	cutoff

	With cutoff, select ‘<atomsel> NOT WITHIN <cutoff> OF <soluteselection>’
(Special routines that are faster than the standard AROUND selection) [0]

	verbosity: int

	level of chattiness; 0 is silent, 3 is verbose [3]

	Returns

	hop.sitemap.Density

	TODO

	
	Should be able to also set skip and start/stop for data collection.

Note

	In order to calculate the bulk density, use

atomselection=’name OH2’,soluteselection=’protein and not name H*’,cutoff=3.5

This will select water oxygens not within 3.5 A of the protein heavy atoms.
Alternatively, use the VMD-based density_from_volmap() function.

	The histogramming grid is determined by the initial frames min and max.

	metadata will be populated with psf, dcd, and a few other items.
This allows more compact downstream processing.

See also

docs for
MDAnalysis.analysis.density.density_from_Universe() [https://www.mdanalysis.org/docs/documentation_pages/analysis/density.html#MDAnalysis.analysis.density.density_from_Universe]
(defaults for kwargs are defined there).

	
hop.density.print_combined_equivalence_sites(target, reference)

	Tabulate equivalence sites of target against the reference.

BUG: THIS IS NOT WORKING (because the assignment sites <–> waters
is broken)

4.1.3. Using qhull to define regions for hopping analysis — hop.qhull

Interface to some functions of the `qhull`_ (or rather the qconvex [http://www.qhull.org/html/qconvex.htm])
program. `qhull`_ must be installed separately (see links).

The main functionality is to define a region in space within the convex hull of
a protein. The hull is typically defined by a selection of atoms and written as
a “density” file for use in hop.

4.1.3.1. Example

In this example the convex hull of the C-alpha atoms is
computed. Initially, points must be extracted from the structure to a file:

hop.qhull.points_from_selection(psf='protein.psf', pdb='protein.pdb', filename='ca_100%.dat')

and saved to file ca_100%.dat.

This is usually too large and also entails regions of the hydration
shell outside of interal cavities. A relatively robust workaround for
roughly globular proteins is to shrink the convex hull, using the
scale argument of hop.qhull.make_ca_points(). Shrinking to
70% appears to be a good starting point:

hop.qhull.points_from_selection(psf='protein.psf', pdb='protein.pdb', filename='ca_70%.dat', scale=0.7)

The convex hull itself is generated from the datafile of the points:

Q70 = hop.qhull.ConvexHull('ca_70%.dat', workdir='cavity70%')

Another density grid b (such as a real water density for the bulk) is
currently required to generate a pseudo density based on the convex
hull. The real density provides the grid on which the convex hull is
mapped:

b = hop.sitemap.Density(filename='bulk')
QD70 = Q70.Density(b)

(This maps out sites at the threshold level set in b; change it
with the hop.sitemap.Density.map_sites() method if required.)

	Insert a bulk density::

	QD70.site_insert_bulk(b)

	
class hop.qhull.ConvexHull(coordinates, workdir=None, prefix=None)

	The convex hull of a set of points.

The convex hull is calculated with the `qhull`_ program.

Compute convex hull and populate data structures.

	Arguments

	

	coordinates: input suitable for qconvex

	workdir: store intermediate files in workdir (tmp dir by default)

	prefix: filename prefix for intermediate output files

	
Density(density, fillvalue=None)

	Create a Density object of the interior of the convex hall.

Uses another Density object density as a template for the grid.

Note

This is rather slow and should be optimized.

	
point_inside(point)

	Check if point [x,y,z] is inside the polyhedron defined by planes.

Iff for all i: plane[i]([x,y,z]) = n*[x,y,z] + p < 0 <==> [x,y,z] inside

(i.e. [x,y,z] is under all planes and the planes completely define the enclosed space

	
points_inside(points)

	Return bool array for all points:

True: inside
False: outside

	Arguments

	

	points = [[x1,y1,z1], …] or an iterator that supplies points

	planes: normal forms of planes

	Returns

	

Array with truth values such as [True, False, True, …]

	
read_planes()

	Read planes from qconvex n file.

Numpy array [[n1,n2,n3,-p], …] for planes n*x = -p.

Planes are oriented and point outwards.

	
read_vertices()

	Read vertices from qconvex p file.

Numpy array of points [[x,y,z], …]

	
wd(*args)

	Return path in workdir.

	
class hop.qhull.VertexPDBWriter(filename)

	PDB writer that implements a subset of the PDB 3.2 standard.
http://www.wwpdb.org/documentation/format32/v3.2.html

	
ATOM(serial=None, name=None, altLoc=None, resName=None, chainID=None, resSeq=None, iCode=None, x=None, y=None, z=None, occupancy=1.0, tempFactor=0.0, element=None, charge=0)

	Write ATOM record.
http://www.wwpdb.org/documentation/format32/sect9.html
Only some keword args are optional (altLoc, iCode, chainID), for some defaults are set.

All inputs are cut to the maximum allowed length. For integer
numbers the highest-value digits are chopped (so that the
serial and reSeq wrap); for strings the trailing characters
are chopped.

Note: Floats are not checked and can potentially screw up the format.

	
REMARK(*remark)

	Write generic REMARK record (without number).
http://www.wwpdb.org/documentation/format32/remarks1.html
http://www.wwpdb.org/documentation/format32/remarks2.html

	
TITLE(*title)

	Write TITLE record.
http://www.wwpdb.org/documentation/format32/sect2.html

	
write(coordinates, name='CA', resname='VRT', resid=1)

	Write coordinates as CA.

	
hop.qhull.points_from_selection(*args, **kwargs)

	Create a list of points from selected atoms in a format suitable for qhull.

points_from_selection(topology, structure, selection=”name CA”, filename=”points.dat”, scale=None)

	Arguments

	

	psf: Charmm topology file

	pdb: coordinates

	selection: MDAnalysis select_atoms() selection string [C-alpha atoms]

	filename: name of the output file; used as input for ConvexHull

	scale: scale points around the centre of geometry; values of 0.5 - 0.7 typically ensure that
the convex hull is inside the protein; default is to not to scale, i.e. scale = 1.

	
hop.qhull.write_coordinates(filename, points, scale=None)

	Write an array of points to a file suitable for qhull.

4.1.4. Generating the hopping trajectory — hop.trajectory

Based on a definition of grid sites, convert a molecular dynamics
trajectory into a trajectory of site hops.

You will also need the following modules to create the input for
HoppingTraj: hop.sitemap.

4.1.4.1. Classes

	
class hop.trajectory.HoppingTrajectory(trajectory=None, group=None, density=None, filename=None, hopdcd=None, hoppsf=None, fixtrajectory=None, verbosity=3)

	Provides a time-sequence of sites visited by individual molecules,
called a ‘hopping trajectory’ because the molecules hop between
sites. Their coordinates are mapped to site labels, which have been defined
on a grid previously (using hop.sitemap).

	Output format

	

For simplicity and code reusal this is again a dcd with the site as the
x-coordinate; the y coordinate is set to the ‘orbit site’, i.e. it records
the site the particle was last at for as long as it does not enter a new
site. It describes the site in whose ‘basin of attraction’ the particle
orbits. Note, however, that the transition to a new site is still counted
as belonging to the previous site (which is arguably incorrect); the
hop.graph module, however, does a proper analysis, which is cannot be done
here for efficieny reasons. The z field is unused at the moment and set to
0.

	Attributes

	

ts MDAnalysis.Timestep object
n_frames number of frames in hopping trajectory
group AtomGroup of atoms that are tracked

	Methods

	

[start:stop] object can be used as an iterator over the
hopping trajectory (disabled du to problems when doing random
access on large dcds; either a bug in DCDReader or python)
next() advances time step in the hopping trajectory
map_dcd() iterator that updates the ts and maps the trajectory

coordinates to site labels

_map_next_timestep() map next coordinate trajectory step to hopping time step
_read_next_timestep() read next timestep from hopping trajectory

write() write the hopping trajectory to a dcd file + psf
write_psf() write a dummy psf for visualization

Converts a trajectory into a hopping trajectory, using a sitemap as an index for sites.

>>> h = HoppingTrajectory(trajectory=DCDReader,group=AtomGroup,density=Density,
 fixtrajectory=<dict>,verbosity=3)
>>> h = HoppingTrajectory(filename=<name>)

Create from a coordinate trajectory of a group of atoms and a site map:

u = MDAnalysis.Universe(psf,dcd)
water = u.select_atoms(‘name OH2’)
h = HoppingTrajectory(trajectory=u.trajectory,group=water,density=water_density)

Load from a saved hopping trajectory (in dcd format with dummy psf)

h = HoppingTrajectory(hopdcd=’hops.trajectory’,hoppsf=’hops.psf’)

	Arguments

	

trajectory MDAnalysis.trajectory trajectory instance
group MDAnalysis.group instance
density grid3Dc.Grid instance with sitemap set

hopdcd dcd written by write()
hoppsf psf written by write() (or write_psf())
filename or simply provide one filename prefix for psf and dcd

	fixtrajectory dictionary with attributes of a dcd object and new

	values; used to provide correct values after using
a catdcd-generated trajectory (hack!), e.g.
fixtrajectory = {‘delta’:10.22741474887299}

verbosity show status messages for >= 3

	
filename(filename=None, ext=None, set_default=False, use_my_ext=False)

	Supply a file name for the object.

fn = filename() —> <default_filename>
fn = filename(‘name.ext’) —> ‘name’
fn = filename(ext=’pickle’) —> <default_filename>’.pickle’
fn = filename(‘name.inp’,’pdf’) –> ‘name.pdf’
fn = filename(‘foo.pdf’,ext=’png’,use_my_ext=True) –> ‘foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and
if provided, another extension is appended. Chooses a default if no
filename is given. Raises a ValueError exception if no default file name
is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a
default ext(tension).

	
map_dcd(start=None, stop=None, step=None)

	Generator to read the trajectory from start to stop and map
positions to sites.

ts = map_dcd(**kwargs)

Arguments:
start starting frame number (None means first)
stop last frame to read (exclusive) (None means last)

(Those are arguments to dcd[start:stop].)

Iterator Returns:
ts hopping trajectory timestep object (iterator)

	
next()

	Provides the next time step of a hopping trajectory.

ts = next()

If a hopping trajectory file exists then this is
used. Otherwise, the coordinate trajectory is mapped on the
fly (which is computationally more expensive).

	
ts

	Timestep of the hoptraj

	
write(filename, start=None, step=None, delta=None, load=True)

	Write hopping trajectory as standard dcd file, together with a minimal psf.

write(‘hop’)

Arguments:

	load = True Immediately loads the trajectory so that further

	calls to next() will use the computed
trajectory and don’t use expensive mapping.

Ignore the other options and leave them at the
defaults. Currently, only the whole trajectory is written. For
visualization one also needs the dummy psf of the group.

Results:

filename.trajectory and filename.psf

Note that it is your responsibility to load the hopping
trajectory and the appropriate psf together as there is very
limited information stored in the dcd itself.

	
write_psf(filename)

	Write a dummy psf just for the atoms in the selected group
so that one can visualize the hopping trajectory.

write_psf(filename)

The psf is NOT a fully functional psf. It only contains the
header and the ATOMS section. It is sufficient to display the
hopping trajectory in VMD and can be read in by the MDAnalysis
tools in order to store the atom numbers for the hopping
trajectory.

Format from psffres.src

CHEQ:
II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I),ECH(I),EHA(I)

	standard format:

	(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8,2G14.6)
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR

	expanded format EXT:

	(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8,2G14.6)
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR

no CHEQ:
II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I)

	standard format:

	(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8)
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8) XPLOR

	expanded format EXT:

	(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8)
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8) XPLOR

	
class hop.trajectory.TAPtrajectory(trajectory=None, group=None, TAPradius=2.8, TAPsteps=3, filename=None, dcd=None, psf=None, fixtrajectory=None, verbosity=3)

	Provides a Time-Averaged Position (TAP) version of the input trajectory.

The method is described in Henchman and McCammon, J Comp Chem 23
(2002), 861 doi:10.1002/jcc.10074

	Attributes

	

ts MDAnalysis.Timestep object
n_frames number of frames in TAP trajectory
group AtomGroup of atoms that are tracked

	Methods

	

[start:stop] object can be used as an iterator over the
hopping trajectory (disabled due to dcdreader bug)
next() advances time step in the hopping trajectory
map_dcd() iterator that updates the ts and maps the trajectory

coordinates to site labels

_map_next_timestep() map next coordinate trajectory step to hopping time step
_read_next_timestep() read next timestep from hopping trajectory

write() write the hopping trajectory to a dcd file + psf

A TAP trajectory object converts a trajectory into a TAP trajectory.

Create from a coordinate trajectory of a group of water residues:

u = MDAnalysis.Universe(psf,dcd)
water = u.select_atoms(‘resname TIP*’) # see NOTE below!!
water = u.select_atoms(‘name OH2’) # better, see NOTE below!!
h = TAPtrajectory(trajectory=u.trajectory,group=water)

Load from a saved hopping trajectory (in dcd format with dummy psf)

h = TAPtrajectory(dcd=’TAP.trajectory’,psf=’TAP.psf’)

The given atom group is filtered according to the Time-Averaged Positon
algorithm (Henchman and McCammon, J Comp Chem 23 (2002), 861). Original
positions are replaced by their TAPs: A particles last position (TAP)
is retained unless it has moved farther than TAPradius from its TAP
measured by its root mean square distance over the last TAPsteps
frames.

One can use a TAP filtered trajectory ‘on-the-fly’ to build the density:

u = Universe(psf,dcd)
oxy = u.select_atoms(‘name OH2’)
TAP = TAPtrajectory(u.trajectory,oxy)
u.trajectory = TAP.trajectory # <— replace orig dcd with TAP !!
dens = hop.density.density_from_Universe(u,atomselection=’name OH2’)

NOTE: In the current implementation residues are often ripped apart
because all coordinates are processed independently. It is recommended
to only do TAP on the water oxygens (for speed). This will create a
trajectory in which hydrogens are always ripped from the oxygen but
this trajectory is ONLY being used for creating a density from those
oxygen using hop.sitemap.build_density().

(This could be fixed at the cost of speed; in this case TAP would be done
on the centre of mass and the whole residue would be translated.)

	Arguments

	

trajectory MDAnalysis.trajectory trajectory instance
group MDAnalysis.group instance (from the same Universe as trajectory)
TAPradius particles are considered to be on the TAP as long as they

haven’t moved farther than TAPradius over the last TAPsteps frames

	TAPsteps RMS distance of particle from TAP over TAPsteps is compared

	to TAPradius

dcd dcd written by write()
psf psf written by write() (or write_psf())
filename or simply provide one filename prefix for psf and dcd

	fixtrajectory dictionary with attributes of a dcd object and new

	values; used to provide correct values after using
a catdcd-generated trajectory (hack!), e.g.
fixtrajectory = {‘delta’:10.22741474887299}

verbosity show status messages for >= 3

	
filename(filename=None, ext=None, set_default=False, use_my_ext=False)

	Supply a file name for the object.

fn = filename() —> <default_filename>
fn = filename(‘name.ext’) —> ‘name’
fn = filename(ext=’pickle’) —> <default_filename>’.pickle’
fn = filename(‘name.inp’,’pdf’) –> ‘name.pdf’
fn = filename(‘foo.pdf’,ext=’png’,use_my_ext=True) –> ‘foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and
if provided, another extension is appended. Chooses a default if no
filename is given. Raises a ValueError exception if no default file name
is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a
default ext(tension).

	
map_dcd(start=None, stop=None, skip=1)

	Generator to read the trajectory from start to stop and map
positions to TAP sites.

ts = map_dcd(**kwargs)

Arguments:
start starting frame number (None means first)
stop last frame to read (exclusive) (None means last)

(Those are arguments to dcd[start:stop].)

Iterator Returns:
ts hopping trajectory timestep object (iterator)

	
next()

	Provides the next time step of a TAP trajectory.

ts = next()

If a TAP trajectory file exists then this is used. Otherwise,
the coordinate trajectory is mapped on the fly (which is
computationally more expensive).

	
write(filename, start=None, step=None, delta=None, load=True)

	Write hopping trajectory as standard dcd file.

write(‘TAP’)

	Arguments

	

	load = True Immediately loads the trajectory so that further

	calls to next() will use the computed
trajectory and don’t use expensive mapping.

Ignore the other options and leave them at the defaults. Currently,
only the whole trajectory is written. All atoms in the original
trajectory are written to the output so you should be able to use your
original psf file.

NOTE: Fixed atoms are possibly not accounted for properly.

Note that it is your responsibility to load the TAP trajectory and the
appropriate psf together as there is very limited information stored in
the dcd itself.

	
class hop.trajectory.ThinDCDReader(datafeeder)

	DCD-like object that supports a subsection of the DCDReader
interface such as iteration over frames and most attributes. The
important part is that the __iter__() method is overriden to
provide data from another source. This allows a filter architecture
for trajectories.

4.1.5. Generating and analyzing a hopping graph — hop.graph

Interprete the high density sites as graph (‘transport graph’), with
the sites as vertices and transitions (sampled by the simulation) as
edges. The graph is directed.

Each edge (transition) is decorated with the dominant transition rate,
the number of events seen, and an instance of fit_func, which
represents the fitted function to the survival times.

Each vertex (site) is decorated with the average residency time (and stdev, N).

Typical use of the module:

TN = TransportNetwork(hoppingTrajectory,density)
hopgraph = TN.HoppingGraph()
hopgraph.save('hopgraph')

The basic object is the hop.graph.HoppingGraph; see its
documentation for further analysis methods.

4.1.5.1. Classes and functions

	
class hop.graph.CombinedGraph(g0=None, g1=None, filename=None)

	Hybrid graph between hop graphs that share common nodes.

	
equivalent_sites_stats(graphnumber, elabels, equivalence=True)

	Print statistics about one or a list of equivalence sites for the numbered graph.

CombinedGraph.equivalent_sites_stats(graphnumber,elabels)

	Arguments

	

graphnumber index into CombinedGraph.graphs (typically, 0 or 1)
elabels single label or list of labels of equivalence sites

(without a ‘*’ if the default identifier is used)

	equivalence True: interprete elabels as equivalence labels

	
	False: elabels are labels local to the graph (as used

	in the output of this method)

	
export(igraph, filename=None, format='XGMML', imageformat=None, use_filtered_graph=True)

	Layout the combined graph and highlight the chosen graph.

h.export(igraph=0)

	Arguments

	

graph 0 or 1, selects which graph is to be highlighted
filename name for the output files; appropriate suffixes are added

automatically

format XGMML or dot
imageformat graphics output format (png, jpg, ps, svg, … see below)
use_filtered_graph

By default, the filtered graph (see the filter() method) is
plotted. If set to False then the original HoppingGraph is
used instead.

Common nodes are always highlighted in red and shown with the
common label. Nodes and edges belonging to the selected graph
are shown in black; the other graph is only shown in light
gray.

The graph is only written to an image file if an image format
is supplied. See
https://networkx.lanl.gov/reference/pygraphviz/pygraphviz.agraph.AGraph-class.html#draw
for possible output formats but png, jpg, ps are safe bets.

	Format

	

	XGMML http://www.cs.rpi.edu/~puninj/XGMML/draft-xgmml.html#Intro and

	GML http://www.infosun.fim.uni-passau.de/Graphlet/GML/

dot See http://graphviz.org/doc/info/attrs.html for attributes.

Note: On Mac OS X 10.3.9+fink the pygraphviz rendering is
buggy and does not include node labels. Simply use the
exported .dot file and use Mac OS X graphviz from
http://www.pixelglow.com/graphviz/

	
export3D(**kwargs)

	Export pdb and psf file for visualization in 3D.

>>> h.export3D()
Uses h.site_properties if it exists.

>>> h.export3D(density)
Uses a (hopefully matching) Density object to pull in site_properties.

	Arguments

	

density hop.sitemap.Density with full site_properties
filename prefix for output files: <filename>.psf and <filename>.pdb
use_filtered_graph

define a filtered graph with h.filter() first

The method writes a psf and a pdb file from the graph, suitable
for visualization in, for instance, VMD.

Sites are represented as residues of resname ‘NOD’; each site
is marked by one ‘ATOM’ (of type CA) at the center of geometry
of the site. Edges are bonds between those pseudo atoms.

#Currently: B-factor 1 if common site label exist, 0 otherwis
occupancy: avg site occupancy
(but this should become customizable)

One should use a filtered graph with the bulk site removed for
visualization.

Bugs:
* with a filtered graph, the degree is the one of the filtered

graph and not of the real underlying graph

	cannot yet select what to display in B-factor and occupancy field:
choose from: [‘identity’,’occupancy’,’degree’,’volume’]

	
is_connected(igraph, n1, n2)

	Return True if nodes n1 and n2 in graph igraph are connected.

	
load(filename=None)

	Reinstantiate CombinedGraph from a pickled CombinedGraph (from save()).

	
plot(igraph, filename=None, format='png', use_filtered_graph=True, label_sites=None, prog='neato', cmap=None, max_node_size=500, interactive=True, **drawargs)

	Plot filtered graph using matplotlib.

	Arguments

	

igraph number of the graph (0 or 1)
filename file to write to
format any format that matplotlib allows and pdf
use_filtered_graph

use a previously defined filtered graph (should be True)

	label_sites {‘all’:False, ‘common’:True, ‘none’:False} switches that determine

	which labels to add to the nodes

	prog layout program, can be any of the graphviz programs

	‘dot’,’neato’,’twopi’,’circo’,’fdp’,’nop’

	cmap matplotlib color map: nodes are colored by distance of the site from

	the geometric center of all sites (excluding bulk)

max_node_size maximum node size (in point**2, q.v. matplotlib.scatter())
interactive True: display graph. False: only save to file (eg if no X11)
**drawargs additional keyword arguments to networkx.draw() (q.v.)

eg ‘linewidths=(0.01,)’ for vanishing outlines.

	
plot_fits(**kwargs)

	Plot survival time fit against data.

plot_fits(ncol=2)

The time values are taken to cover all measured tau.

ncol number of columns
nrow number of rows per page
plottype ‘linear’ or ‘log’
dt time step in ps; use value in self.trjdata[‘dt’] or 1ps
use_filtered_graph

True: use the filtered graph (see filter()),
False: use raw data.

directory save all pdf files under this directory
format file format for plot (png,eps,pdf… depends on matplotlib)
interactive False: do not display graphs on scren (default)

True: show graphs on screen, can be slow and probably
requires ipython as your python shell

verbosity chattiness level

All N graphs are laid out in nrow x ncol grids on as many
pages/figures as necessary.

The pages are written as eps/pdf files using a fixed filename
in the given directory (‘survival_times’ by default).

	
site_properties

	site_properties of the combined graph, indexed by node label.

	
stats(igraph, data=None)

	Statistics for the hopping graph.

d = stats(igraph,[data=dict])

Without the data argument, the method just returns some
interesting values gathered from the graph igraph and the density. If
a data dictionary is given, then the raw data are loaded into
the dict and can be processed further by histogramming etc.

	Arguments

	

igraph number of the graph
data optional dictionary to hold raw data for

processing; modified by method

	Returns

	

d dictionary with expressive keys, holding the results

	
tabulate_k(**kwargs)

	List of tuples (from, to, rate (in 1/ns), number of transitions).

	
class hop.graph.HoppingGraph(graph=None, properties=None, filename=None, trjdata=None, site_properties=None)

	A directed graph that describes the average movement of
molecules between different well-defined sites by treating the
sites as nodes and transitions as edges.

	Attributes

	

	graph

	graph with edges; edges contain rates, fit functions, etc

	properties

	raw data for edges

	trjdata

	metadata of the original trajectory

	site_properties

	density-derived node properties, imported from hop.sitemap.Density

	theta

	dict of nodes with residence times (see compute_site_times())

	occupancy_avg

	average occupancy with standard deviation (see compute_site_occupancy())

	occupancy_std

	(numpy array)

	Methods

	

	compute_site_occupancy()

	Computes occupancies from the residency times theta and
updates self.occupancy_avg and self.occupancy_std.

	compute_site_times()

	Computes residency time theta.

	save()

	save graph as a pickled file

	load()

	reinstantiate graph from saved file; typically just use the
constructor with the filename argument

	filter()

	make a filtered graph for further analysis and visualization;
most plot/export functions require a filtered graph

	plot_fits()

	plot fits of the survival time against the data

	tabulate_k()

	table of rate constants

	export()

	export graph as a dot file that can be used with graphviz

	export3D()

	export graph as a psf/pdb file combination for visualization in VMD

Properties for nodes are always stored as numpy arrays so that one
can directly index with the node label (==site label), which is an
integer from 0 to the number of nodes. Note that 0 is the
interstitial (and only contains bogus data or None), and 1 is the
bulk. The bulk site is often excluded from analysis because it is
different in nature from the ‘real’ sites defined as high density
regions.

Directed graph with edges containing the rate k_ji,number of observations and S(t) fit.

h = HoppingGraph(graph,properties)
h = HoppingGraph(filename=’HoppingGraph.pickle’)

	Arguments

	

	graph

	networkx graph with nodes (i) and edges (i,j)

	properties

	dictionary of edges: For each edge e, properties contains a
dictionary, which contains under the key ‘tau’ a list of
observed waiting times tau_ji. nodes are also listed if
they do not participate in a transition

	trjdata

	dictionary describing properties of the trajectory
such as time step ‘dt’ or name of ‘dcd’ and ‘psf’.

	Attributes that are in use:

	
	dt

	time between saved snapshots in ps

	hoppsf

	hopping trajectory psf file name

	hopdcd

	hopping trajectory dcd file name

	density

	pickle file of the density with the sites

	totaltime

	length of trajectory in ps[*]_

	Not used:

	
	time_unit

	‘ps’

	site_properties

	list of site properties:
hop.sitemap.Density.site_properties (add if you want graphs
with mapped labels) (Really required for most things…!)

When the graph is built from edges and properties then the
rate constants are calculated. For graphs with many hopping
events this can take a long time (hours…).

The decorated and directed graph is accessible as HoppingGraph.graph

	BUGS

	

	trjdata is required for full functionality but it is currently the user’s
responsibility to fill it appropriately (although TransportNetwork.compute_residency_times()
already adds some data)

	site_properties are required and must be added with the constructor

	
compute_site_occupancy()

	Computes occupancies from the residency times theta and updates self.occupancy.

compute_site_occupancy()

	occupancy::

	

N_i

	o[i] = 1/T Sum theta[i,k]

	k=1

where T is the total trajectory time and the sum runs over
all residency times that were recorded for the site i.

attributes:

	self.occupancy_avg

	numpy array with occupancies, site label == index

	self.occupancy_std

	numpy array with error estimates for occupancies
(Delta = Delta(theta)/T; this is a biased estimate because
Delta(theta) is calculated with N instead of N-1)

	
compute_site_times(verbosity=3)

	Compute the ‘residency’ time of each water molecule on each site.

compute_site_times()

The ‘life time’ of a site i is computed as

theta[i] = <t[*,i]>

where t[*,i] stands for all waiting times t[j,i] for hops from
site i to all other sites AND the waiting times t[i] of
molecules that are not observed to leave site i.

	The function updates self.theta[site] for each site with an

array of residency times (in ps).

	The life times are stored in self.lifetime_avg[site] and
self.lifetime_std[site]

TODO:
* Maybe use the barrier time as well (or a portion thereof,

perhaps proportional to the barrier height (related to the
kji) — rate theory??)

	
connectedness(n)

	Return values that measure connectedness (can be used in occupancy field)

	
equivalent_sites_stats(elabels, equivalence=True)

	Statistics about one or a list of equivalence sites.

g.equivalent_sites_stats(elabels,equivalence=True)

	Arguments

	

elabels a single label or a list of node labels
equivalence True: interprete elabels as ‘equivalence labels’, i.e. the label

attached to a site common to two densities
False: elabels are labels local to the graph

	
export(filename=None, format='XGMML', use_filtered_graph=True, use_mapped_labels=True)

	Export the graph to a graph format or an image.

export(‘hopgraph’,format=’XGMML’,use_filtered_graph=True)

	Arguments

	

	filename name for the output files; appropriate suffixes are added

	automatically

format output format: graphs (XGMML or DOT) or image (png, jpg, ps, svg)
use_filtered_graph

By default, the filtered graph (see the filter() method) is
plotted. If set to False then the original HoppingGraph is
used instead.

	use_mapped_labels

	If site_properties is provided then each node that has been
identified to exist in a reference network is coloured black
and the mapped label is printed instead of the graph label.

	
export3D(density=None, filename=None, use_filtered_graph=True)

	Export pdb and psf file for visualization in 3D.

>>> h.export3D()
Uses h.site_properties if it exists.

>>> h.export3D(density)
Uses a (hopefully matching) Density object to pull in site_properties.

	Arguments

	

density hop.sitemap.Density with full site_properties
filename prefix for output files: <filename>.psf and <filename>.pdb
use_filtered_graph

define a filtered graph with h.filter() first

The method writes a psf and a pdb file from the graph, suitable
for visualization in, for instance, VMD.

Sites are represented as residues of resname ‘NOD’; each site
is marked by one ‘ATOM’ (of type CA) at the center of geometry
of the site. Edges are bonds between those pseudo atoms.

#Currently: B-factor 1 if common site label exist, 0 otherwis
occupancy: avg site occupancy
(but this should become customizable)

One should use a filtered graph with the bulk site removed for
visualization.

Bugs:
* with a filtered graph, the degree is the one of the filtered

graph and not of the real underlying graph

	cannot yet select what to display in B-factor and occupancy field:
choose from: [‘identity’,’occupancy’,’degree’,’volume’]

	
filename(filename=None, ext=None, set_default=False, use_my_ext=False)

	Supply a file name for the object.

fn = filename() —> <default_filename>
fn = filename(‘name.ext’) —> ‘name’
fn = filename(ext=’pickle’) —> <default_filename>’.pickle’
fn = filename(‘name.inp’,’pdf’) –> ‘name.pdf’
fn = filename(‘foo.pdf’,ext=’png’,use_my_ext=True) –> ‘foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and
if provided, another extension is appended. Chooses a default if no
filename is given. Raises a ValueError exception if no default file name
is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a
default ext(tension).

	
filter(exclude=None)

	Create a filtered version of the graph.

For looking at most things:
>>> h.filter(exclude={‘outliers’:True})

For looking at exchange rates and plotting:
>>> h.filter(exclude={‘outliers’:True, ‘Nmin’:5, ‘unconnected’:True})

For export3D do not use the bulk site:
>>> h.filter(exclude={‘outliers’:True,’bulk’:True})

This method makes a copy of the hopping graph and applies the
filter rules to the copy. Other output functions use this copy
if it exists.

	exclude dict of components to exclude. May contain

	
	{‘outliers’:True, ‘Nmin’:integer,

	‘bulk’: True, ‘unconnected’:True}

If outliers == True then all edges from the ‘outlier’ node
are deleted previous to displaying the
graph. Those edges correspond to particles
starting in a region not covered by the intial
histogram boundaries and enter a mapped site at a
later point in time.

With Nmin, any node that has fewer than Nmin transition
is discarded.

unconnected == True finaly filters all nodes that have no
edges left

	
from_site(edge)

	Returns the originating site of hop.

	
internal_sites()

	Returns list of sites that have no connection to the bulk.

	
is_connected(n1, n2)

	True if node n1 has any connection to the site n2.

	
is_from_bulk(edge)

	True if the edge originated in the bulk.

	
is_internal(n)

	True if site n has no connection to the bulk.

	
is_isolated(n)

	True if site n has no connections to other sites (ie its degree equals 0).

	
isolated_sites()

	Returns list of sites that have no other connections.

	
load(filename=None)

	Reinstantiate HoppingGraph from a pickled HoppingGraph (from save()).

	
number_of_hops(edge)

	Number of transitions recorded.

	
plot_fits(ncol=2, nrow=3, dt=None, plottype='log', use_filtered_graph=True, directory='survival_times', format='png', interactive=False, verbosity=3)

	Plot survival time fit against data.

plot_fits(ncol=2)

The time values are taken to cover all measured tau.

ncol number of columns
nrow number of rows per page
plottype ‘linear’ or ‘log’
dt time step in ps; use value in self.trjdata[‘dt’] or 1ps
use_filtered_graph

True: use the filtered graph (see filter()),
False: use raw data.

directory save all pdf files under this directory
format file format for plot (png,eps,pdf… depends on matplotlib)
interactive False: do not display graphs on scren (default)

True: show graphs on screen, can be slow and probably
requires ipython as your python shell

verbosity chattiness level

All N graphs are laid out in nrow x ncol grids on as many
pages/figures as necessary.

The pages are written as eps/pdf files using a fixed filename
in the given directory (‘survival_times’ by default).

	
rate(edge)

	Returns the fastest rate on an edge, in ns^-1

	
rates(n, use_filtered_graph=True)

	Returns k_tot, k_in, k_out (and N_*) for site n (bulk rates omitted from k).

dictionary = rates(n,use_filtered=True)

k_in = sum_j k_nj (> 0) j<>bulk
k_out = sum_j k_jn (< 0) j<>bulk
k_tot = k_in + k_out

Note that k_tot should be ~0 if a bulk rate is included
because the graph should obey detailed balance.

	
save(filename=None)

	Save HoppingGraph as a pickled python object.

	
select_graph(use_filtered_graph)

	Returns filtered graph for True argument, or the raw graph otherwise)

	
show_rates(filename=None)

	Print the rates (in 1/ns) between sites, and the total number of observations.

show_rates(file=filename)

By default, prints to stdout but if file = filename then
filename is opened and data are written to the file.

A description of the fit function used to obtain the rate is
also printed in the last column.

Only the “dominant” rate is shown; see the fit_func
description for cases when two rates were computed.

See also

HoppingGraph.tabulate_k().

	
show_site(sites, use_filtered_graph=True)

	Display data about sites (list of site labels or single site).

	
show_total_rates(use_filtered_graph=True)

	Display total rates for all nodes (excluding bulk –> site contributions).

	
site_properties

	Site_properties, indexed by node label.
Setting this attribut also updates self.equivalent_sites_index.

	
stats(data=None)

	Statistics for the hopping graph.

stats([data=dict]) –> dict

Without the data argument, the method just returns some
interesting values gathered from the graph and the density. If
a data dictionary is given, then the raw data are loaded into
the dict and can be processed further by histogramming etc.

	Arguments

	
	data

	optional dictionary to hold raw data for processing;
modified by method

	Returns

	dictionary with expressive keys, holding the results

	
tabulate_k()

	List of tuples (from, to, rate (in 1/ns), number of transitions).

	
to_site(edge)

	Returns the site to which a hop is directed.

	
waitingtime_fit(edge)

	Returns the fit function for the edge’s waiting time distribution.

	
write_psf(graph, props, filename=None)

	Pseudo psf with nodes as atoms and edges as bonds

	
class hop.graph.TransportNetwork(traj, density=None, sitelabels=None)

	A framework for computing graphs from hopping trajectories.

The unit of time is ps.

The TransportNetwork is an intermediate data structure
that is mainly used in order to build a HoppingGraph with
the TransportNetwork.HoppingGraph() method.

Setup a transport graph from a hopping trajectory instance.

	::

	hops = hop.trajectory.HoppingTrajectory(hopdcd=’whop.dcd’,hoppsf=’whop.psf’)
tn = TransportNetwork(hops)

	
HoppingGraph(verbosity=3)

	Compute the HoppingGraph from the data and return it.

	
compute_site_occupancy()

	Computes occupancies from the residency times theta and updates self.occupancy.

	occupancy::

	
N_i

	o[i] = 1/T Sum theta[i,k]

	k=1

where T is the total trajectory time and the sum runs over
all residency times that were recorded for the site i.

	Attributes

	

	self.occupancy

	numpy array with occupancies, site label == index

	self.occupancy_error

	numpy array with error estimates for
occupancies (Delta = Delta(theta)/T; this is
a biased estimate because Delta(theta) is
calculated with N instead of N-1)

	
compute_site_times(verbosity=3)

	Compute the ‘residency’ time of each water molecule on each site.

The ‘site time’ of a site i is computed as:

theta[i] = 1/T_sim (Sum_j tau[j,i] + Sum tau[i])

tau[j,i] is the waiting time for hops from i to j. tau[i] is
the waiting time for molecules that are not observed to leave
site i.

The function updates self.theta[site] for each site with an
array of residency times (in ps).

It uses the residency times and thus requires
compute_residency_times() was run previously.

	TODO

	Maybe use the barrier time as well (or a portion thereof,
perhaps proportional to the barrier height (related to the
kji) — rate theory??)

	
export(filename=None, format='png', exclude_outliers=False)

	Export the graph as dot file and as an image.

export(filename)

See https://networkx.lanl.gov/reference/pygraphviz/pygraphviz.agraph.AGraph-class.html#draw for possible output formats.

See http://graphviz.org/doc/info/attrs.html for attributes.

Note: On Mac OS X 10.3.9+fink the pygraphviz rendering is
buggy and does not include node labels. Simply use the
exported .dot file and use Mac OS X graphviz from
http://www.pixelglow.com/graphviz/

	
graph_alltransitions()

	Constructs the graph that contains all transitions in the trajectory.

Populates TransportGraph.graph with a graph that contains all
sites and one edge for each transition that was observed in
the trajectory. Useful for an initial appraisal of the
complexity of the problem.

Warning

Erases any previous contents of graph.

	
plot_residency_times(filename, bins=None, exclude_outliers=True)

	Plot histograms of all sites

plot_residency_times(‘sitetime.eps’)

pylab always writes the figure to the named file. If pylab is
already running, display the graph with pylab.show().

The histograms are normalized and the time values are the left
edges of the bins.

If bins=None then the number of bins is determined heuristically.

	
plot_site_occupancy(filename, bins=10, exclude_sites=[0, 1])

	Plot site occupancy (from compute_site_occupancy().

plot_site_occupancy(filename,exclude_sites=[0,1])

filename name of output file
bins bins for histogram (see numpy.histogram)
exclude_site list of site labels which are NOT plotted. Typically,

exclude interstitial and bulk.

	
hop.graph.Unitstep(x, x0)

	
	Heaviside step function

	/ 1 if x >= x0

	Unitstep(x,x0) == Theta(x - x0) = { 0.5 if x == x0

	0 if x < x0

This is a numpy ufunc.

	CAVEAT

	If both x and x0 are arrays of length > 1 then weird things are
going to happen because of broadcasting.
Using nD arrays can also lead to surprising results.

	See also

	http://mathworld.wolfram.com/HeavisideStepFunction.html

	
class hop.graph.fitExp(x, y)

	y = f(x) = exp(-p[0]*x)

	
f_factory()

	Stub for fit function factory, which returns the fit function.
Override for derived classes.

	
initial_values()

	List of initital guesses for all parameters p[]

	
class hop.graph.fitExp2(x, y)

	y = f(x) = p[0]*exp(-p[1]*x) + (1-p[0])*exp(-p[2]*x)

	
f_factory()

	Stub for fit function factory, which returns the fit function.
Override for derived classes.

	
initial_values()

	List of initital guesses for all parameters p[]

	
class hop.graph.fit_func(x, y)

	Fit a function f to data (x,y) using the method of least squares.

Attributes:

parameters list of parameters of the fit

	
f_factory()

	Stub for fit function factory, which returns the fit function.
Override for derived classes.

	
fit(x)

	Applies the fit to all x values

	
initial_values()

	List of initital guesses for all parameters p[]

	
class hop.graph.fitlin(x, y)

	y = f(x) = p[0]*x + p[1]

	
f_factory()

	Stub for fit function factory, which returns the fit function.
Override for derived classes.

	
initial_values()

	List of initital guesses for all parameters p[]

	
hop.graph.survivalfunction(waitingtimes, block_w=200, block_t=1000)

	Returns the survival function S(t), defined by a list of waiting times.

survival([t0, t1, …, tN]) –> S(t)

S(t) is a function that gives the fractional number of particles that
have not yet left the site after time t. It is 1 at t=0 and decays to 0.

	Arguments

	

	waitingtimes

	sequence of the waiting times from the simulations

	block_w

	reduce memory consumption by working on chunks of
the waiting times of size <block_w>; reduce block_w if
the code crashes with :Exception:`MemoryError`.

	block_t

	chunk input function arguments into blocks of size block_t

	TODO

	Make S(t) an interpolation function: massive speedup and fewer memory problems

4.2. Analyzing hopping graphs and densities

	4.2.1. Extracting information from densities and hop graphs — hop.analysis

	4.1.2. Generating densities from trajectories — hop.density

4.2.1. Extracting information from densities and hop graphs — hop.analysis

A collection of functions and classes to extract statistics and plot
histograms. Use this as examples how to write your own.

4.2.1.1. Classes and functions

	
class hop.analysis.DensityScanner(densityAnalysis, with_densities=True)

	
	
load(fn, merge=True)

	Reinstantiate class from a pickled file (produced with save()).

	
plot(fn=None, idens=0, functions='all', properties=None, fignumber=1)

	Plot density statistics against rho_cut for reference (black) and density 0 (red).

plot(filename,properties=<dict of dicts>)

Plot various functions of the density cut-off rho_cut. Current
functions are ‘sites’, ‘volume’, ‘occupancy’, or ‘all’.

Plots can be customized by using the properties dict. To
change the ylim and add an title to the sites graph, use

properties = {‘sites’: {ylim’:(0,220),’title’:’number of sites’}}

	Arguments

	

fn file name for the file; default is scan.pdf. Suffix determines file type.
idens number of density plot; the first one is 0 in self.scanarrays[].
functions list of function names or ‘all’
properties dict1 of dicts; keys1: sites, volume, occupancy;

keys2: any matplotlib settable property, values2: appropriate values

fignumber pylab figure number

	
class hop.analysis.HeatmapAnalysis(hoppinggraphs, normalization='maxabs', verbosity=1, prune='default')

	Combine Hopgraph statistics for a number of simulations into a grid,
normalize each observable, and color. Clustering is performed if the R
package is installed in the system. The idea is to quickly compare a number
simulations based on a combination of observables.

Create a ‘heatmap’ for the Hopgraph statistics from a dictionary of CombinedGraphs.

>>> hm = HeatmapAnalysis(hg,normalize="maxabs")

	Arguments

	

	HoppingGraphs Dictionary of HoppingGraph instances. The key is used to label

	the simulation in the heat map and thus should be expressive.

	normalization Method to normalize the data across observables. Can be None

	(not recommended), ‘maxabs’, or ‘zscore’. See the normalize()
method for documentation.
NOTE that the normalization strongly influences the clustering
in the heat map.

	verbosity Chattiness; use at least 1 in order to be notified if you

	should install additional packages. Otherwise a less powerful
alternative is chosen silently,

	prune dict with keys that are removed from the heat map; see

	prune_default class attribute.

	Methods

	

plot plot the heat map
normalize normalize using the ‘normalize’ method
labels dictionary of row, column names (and the normalization constants

as strings)

annotation ‘enumerate’ dictionaries of labels but not stringified

	
filename(filename=None, ext=None, set_default=False, use_my_ext=False)

	Supply a file name for the object.

fn = filename() —> <default_filename>
fn = filename(‘name.ext’) —> ‘name’
fn = filename(ext=’pickle’) —> <default_filename>’.pickle’
fn = filename(‘name.inp’,’pdf’) –> ‘name.pdf’
fn = filename(‘foo.pdf’,ext=’png’,use_my_ext=True) –> ‘foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and
if provided, another extension is appended. Chooses a default if no
filename is given. Raises a ValueError exception if no default file name
is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a
default ext(tension).

	
labels(precision=2)

	labels of the columns (simulations) and rows (observables)

	
normalize(method=None)

	Normalize the data by row.

normalize(method=None|’zscore’|’maxabs’)

method can be
None Return the unchanged data array.
‘maxabs’ Take the largest absolute value in each row/column and

divide each entry in the row/column by it. This results
in values between -1 and +1.

‘zscore’ (X-<X>)/sd(X)

Sets self.heatmap, self.normalizations, self.normalization_method

normalizations only makes sense for ‘maxabs’; in all other cases it
only contains zeroes.

	
plot(filename=None, format='pdf', **kwargs)

	Plot the heatmap and save to an image file.

plot() # display using windowing system
plot(‘hm’) # –> hm.pdf
plot(‘hm.png’) # –> hm.png
plot(‘hm’,’png’) # –> hm.png

By default a clustered heat map is constructed using R’s heatmap.2
function. If R cannot be found, an unclustered heat map is
plotted. **kwargs can be used to customize the output.

	Arguments

	

	filename name of the image file; may contain extension

	If empty use the windowing system.

format eps,pdf,png… whatever matplotlib understands

**kwargs for R:
scale Determines the coloring. Choose between ‘none’ (the

actual values in the heat map (possibly already normalized)),
‘row’ or ‘column’ (z-score across the dimension)

N_colors Number of color levels; default is 32.

	**kwargs for matplotlib:

	The kwargs are applied to the matplotlib.text() method and
are typically used to set font properties. See the
pylab/matplotlib documentation.

	
class hop.analysis.HopgraphAnalysis(hopgraph, dir='.', verbosity=3)

	Comprehensive analysis of an annotated hop graph.

Analyse hopgraph.

a = HopgraphAnalysis(hopgraph)

The show() method prints statistics on the HoppingGraph and histograms()
produces a number of plots as pdf files in the current directory.

	Arguments

	

	hopgraph can be the name of a pickled file or a HoppingGraph

	instance

dir save figures in this directory
verbosity=3 chattiness

	Attributes

	

S statistics dictionary (see keys for explanation)
D raw data dictionary

	Methods

	

all() show() and histograms()
show() print stats
histograms() produce histograms

	
class hop.analysis.LegendContainer

	For each bar plot, record first lines instance and the label
with
>>> Legend = LegendContainer()
>>> lines = pylab.bar(…)
>>> Legend.append(lines[0],’plotlabel’)
Once all legends have been collected, build the legend with
>>> pylab.legend(*Legend.args())

	
args()

	Use as pylab.legend(**Legend.args()).

	
hop.analysis.kill_R()

	Manual last resort to kill the R quartz() window.

4.1.2. Generating densities from trajectories — hop.density

As an input a trajectory is required that

	Has been centered on the protein of interest.

	Has all molecules made whole that have been broken across periodic
boundaries.

	Has the solvent molecules remap so that they are closest to the
solute (this is important when using funky unit cells such as
dodechedra or truncated octahedra).

4.1.2.1. Classes and functions

	
class hop.density.BfactorDensityCreator(pdb, delta=1.0, atomselection='resname HOH and name O', metadata=None, padding=1.0, sigma=None)

	Create a density grid from a pdb file using MDAnalysis.

dens = BfactorDensityCreator(psf,pdb,…).PDBDensity()

The main purpose of this function is to convert crystal waters in
an X-ray structure into a density so that one can compare the
experimental density with the one from molecular dynamics
trajectories. Because a pdb is a single snapshot, the density is
estimated by placing Gaussians of width sigma at the position of
all selected atoms.

Sigma can be fixed or taken from the B-factor field, in which case
sigma is taken as sqrt(3.*B/8.)/pi.

TODO:

	Make Gaussian convolution more efficient (at least for same
sigma) because right now it is VERY slow (which may be
acceptable if one only runs this once)

	Using a temporary Creator class with the PDBDensity() helper
method is clumsy (but was chosen as to keep the PDBDensity class
clean and __init__ compatible with Density).

See also

	MDAnalysis.analysis.density [https://www.mdanalysis.org/docs/documentation_pages/analysis/density.html#module-MDAnalysis.analysis.density]

	PDBDensity

Construct the density from psf and pdb and the atomselection.

	pdbstr

	PDB file or MDAnalysis.Universe;

	atomselectionstr

	selection string (MDAnalysis syntax) for the species to be analyzed

	deltafloat

	bin size for the density grid in Angstroem (same in x,y,z) [1.0]

	metadatadict

	dictionary of additional data to be saved with the object

	paddingfloat

	increase histogram dimensions by padding (on top of initial box size)

	sigmafloat

	width (in Angstrom) of the gaussians that are used to build up the
density; if None (the default) then uses B-factors from pdb

For assigning X-ray waters to MD densities one might have to use a sigma
of about 0.5 A to obtain a well-defined and resolved x-ray water density
that can be easily matched to a broader density distribution.

The following creates the density with the B-factors from the pdb file:

DC = BfactorDensityCreator(pdb, delta=1.0, atomselection="name HOH",
 padding=2, sigma=None)
density = DC.Density()

density_from_PDB() for a convenience function

	
PDBDensity(threshold=None)

	Returns a PDBDensity object.

The PDBDensity is a Density with a xray2psf translation table;
it has also got an empty bulk site inserted (so that any
further analysis which assumes that site number 1 is the bulk)
does not discard a valid site.

	threshold Use the given threshold to generate the graph; the threshold

	is assumed to be in the same units as the density.
None: choose defaults (1.0 if bfactors were used, 1.3 otherwise)

	
class hop.density.DensityCollector(name, universe, **kwargs)

	Collect subsequent coordinate frames to build up a Density.

	
class hop.density.PDBDensity(grid=None, edges=None, filename=None, dxfile=None, parameters=None, unit=None, metadata=None)

	Density with additional information about original crystal structure.

This is simply the Density class (see below) enhanced by the add_xray2psf(),
W(), and Wequiv() methods.

Note that later analysis often ignores the site with the bulknumber by default
so one should (after computing a site map) also insert an empty bulk site:

canonical way to build a PDBDensity
(builds the sitepa at threshold and inserts a pseudo bulk site)
xray = BfactorDensityCreator(…).PDBDensity(threshold)

rebuild site map
xray.map_sites(threshold) # map sites at density cutoff threshold
xray.site_insert_nobulk() # insert ‘fake’ bulk site at position SITELABEL[‘bulk’]

find X-ray waters that correspond to a site in another density Y:
(1) build the list of equivalence sites, using the x-ray density as reference
Y.find_equivalence_sites(xray) # also updates equiv-sites in xray!
(2) look at the matches in xray
xray.Wequiv() TODO: not working yet

Density Class

	Class with an annotated density, i.e. additional information

	for each grid cell. Adds information about sites to the grid. A
‘site’ consists of all connected grid cells with a density >=
threshold.

A site is defined as a set of at least ‘MINsite’ grid cells with
density >= threshold that are located in each others’ first and
second nearest neighbour shell (of 26 cells, on the cubic
lattice). A site is labelled by an integer 1..N. The interstitial
is labelled ‘0’. By default, a site may consist of a single grid
cell (MINsite == 1) but this can be changed by setting the
parameter MINsite to another number >1.

When neither grid nor edges are given then the density object can
also be read from a pickled file (filename) or a OpenDX file
(dxfile). In the latter case, care should be taken to properly set
up the units and the isDensity parameter:

>>> g = Density(dxfile='bulk.dx',parameters={'isDensity':True,'MINsite':1},
 unit={'length':'Angstrom','density':'Angstrom^{-3}'},)

Attributes:

grid density on a grid
edges the lower and upper edges of the grid cells along the

three dimensions of the grid

map grid with cells labeled as sites (after label_sites())
sites list of sites: site 0 is the interstitial, then follows

the largest site, and then sites in decreasing order.
Each site is a list of tuples. Each tuple is the index
(i,j,k) into the map or grid.

graph NetworkX graph of the cells

unit physical units of various components
P (default) values of parameters

Methods:

	map_sites(threshold)

	label all sites, defined by the threshold. The threshold
value is stored with the object as the default. The default
can be explicitly set as P[‘threshold’]

save(filename) save object.pickle
load(filename) restore object.pickle (or use d=Density(filename=<filename>))
export() write density to a file for visualization
export_map() write individual sites

Adds information about sites to the grid. Sites are all
cells with a density >= threshold.

density = Density(kargs**)

Sets up a Grid with additional data, namely the site map The
threshold is given as key-value pair in the parameters
dictionary and is assumed to be in the same units as the
density.

If the input grid is a histogram then it is transformed into a
density.

When neither grid nor edges are given then the density object
can also be read from a pickled file (filename) or a OpenDX
file (dxfile). In the latter case, care should be taken to
properly set up the units and the isDensity parameter if the
dx file is a density:

>>> g = Density(dxfile='bulk.dx',parameters={'isDensity':True},
 unit={'length':'Angstrom','density':'Angstrom^{-3}'},)

	
W(N, returntype='auto', format=False)

	Returns the resid of water N.

If returntype == ‘psf’ then N is interpreted as the resid in the
x-ray crystal structure (or original pdb file) and a resid N’ in the
psf is returned.

If returntype == ‘xray’ then N is a resid in the psf and the
corresponding crystal structure water is returned. This is
useful to label water molecules by their published identifier,
eg ‘W128’.

If the returntype is set to ‘auto’ and N starts with a W (eg
‘W128’) then it is assumed to be a crystal water and the
returntype is automatically set to psf, otherwise it acts like
‘xray’.

	Arguments

	

N resid of molecule (can be an iterable)
returntype ‘auto’ | ‘psf’ | ‘xray’
format False: return a integer number

True: default string (either “WN’” for x-ray or “#N’” for psf)
python format string: if the string contains %(resid)d then the string

will be used as a format, otherwise the bare number
is returned without raising an error

	
Wequiv(format=True)

	Return a list of the PDB resids of the equivalent sites.

array = Wequiv(format=True)

	format True: array of identifiers ‘Wnn’

	False: array of integers
string: python format string; %(resid)d is replaced

	
add_xray2psf(pdbfile, regex='\\s*W\\s*|HOH|WAT|.*TIP.*|.*SPC.*')

	Add translation table between sequential psf numbering and original pdb numbering for water.

D.add_xray2psf(pdbfilename)

The original pdb is read and all water molecules are sequentially mapped
to the water molecules in the psf (without any checks). The pdb is read
and analyzed using Bio.PDB.

pdbfilename Original crystallographic pdb file
regex extended regular expression to detect water residues

	
equivalence_sites(format=True)

	All equivalence sites (if defined) together with crystallographic water labels.

recarray <– equivalence_sites(self,format=True)

	The numpy.recarray has columns

	equivalence_label the integer label of the equivalence site
equivalence_name the name, a string
xray the identifier of the X-ray water

equivalence_label and equivalence_name are identical between the densities from
which the equivalence sites were computed. The xray identifier is specific for the
structure; by default it is a string such as ‘W135’.

	format True: print ‘W<N>’ identifier

	False: integer <N>
(see W() for more possibilities)

BUG: THIS IS NOT WORKING AS THOUGHT BECAUSE THERE IS NO 1-1
MAPPING BETWEEN WATER MOLECULES AND SITES AND BECAUSE SITES
ARE NOT NUMBERED IN THE SAME ORDER AS THE WATER MOLECULES

TODO: The proper way to do this is to find all water molecules
within a cutoff of each grid cell that belongs to a site and
then store all the waters as the string name of the site.

	
site2resid(sitelabel)

	Returns the resid of the particle that provided the density for the site.

	
site_insert_nobulk()

	Insert an empty bulk site for cases when this is convenient.

	
hop.density.density_from_Universe(*args, **kwargs)

	Create a hop.sitemap.Density from a :class:`Universe.

See also

MDAnalysis.analysis.density.density_from_Universe() [https://www.mdanalysis.org/docs/documentation_pages/analysis/density.html#MDAnalysis.analysis.density.density_from_Universe] for
all parameters and density_from_trajectory() for a
convenience wrapper.

	
hop.density.density_from_trajectory(*args, **kwargs)

	Create a density grid from a trajectory.

density_from_trajectory(PSF, DCD, delta=1.0, atomselection=’name OH2’, …) –> density

or

density_from_trajectory(PDB, XTC, delta=1.0, atomselection=’name OH2’, …) –> density

	Arguments

	
	psf/pdb/gro

	topology file

	dcd/xtc/trr/pdb

	trajectory; if reading a single PDB file it is sufficient to just provide it
once as a single argument

	Keywords

	
	atomselection

	selection string (MDAnalysis syntax) for the species to be analyzed
[“name OH2”]

	delta

	approximate bin size for the density grid in Angstroem (same in x,y,z)
(It is slightly adjusted when the box length is not an integer multiple
of delta.) [1.0]

	metadata

	dictionary of additional data to be saved with the object

	padding

	increase histogram dimensions by padding (on top of initial box size)
in Angstroem [2.0]

	soluteselection

	MDAnalysis selection for the solute, e.g. “protein” [None]

	cutoff

	With cutoff, select ‘<atomsel> NOT WITHIN <cutoff> OF <soluteselection>’
(Special routines that are faster than the standard AROUND selection) [0]

	verbosity: int

	level of chattiness; 0 is silent, 3 is verbose [3]

	Returns

	hop.sitemap.Density

	TODO

	
	Should be able to also set skip and start/stop for data collection.

Note

	In order to calculate the bulk density, use

atomselection=’name OH2’,soluteselection=’protein and not name H*’,cutoff=3.5

This will select water oxygens not within 3.5 A of the protein heavy atoms.
Alternatively, use the VMD-based density_from_volmap() function.

	The histogramming grid is determined by the initial frames min and max.

	metadata will be populated with psf, dcd, and a few other items.
This allows more compact downstream processing.

See also

docs for
MDAnalysis.analysis.density.density_from_Universe() [https://www.mdanalysis.org/docs/documentation_pages/analysis/density.html#MDAnalysis.analysis.density.density_from_Universe]
(defaults for kwargs are defined there).

	
hop.density.print_combined_equivalence_sites(target, reference)

	Tabulate equivalence sites of target against the reference.

BUG: THIS IS NOT WORKING (because the assignment sites <–> waters
is broken)

4.3. Markov Chain Monte Carlo sampling on a hop graph

The hop graph encodes the dynamic information of the system. Using a
Markov Chain Monte Carlo method one can propagate the dynamics to much
longer time scales than accessible by the underlying MD simulations
alone and calculate fluxes across the network.

	4.3.1. Markov Chain Monte Carlo on hopping graph — hop.MCMC

4.3.1. Markov Chain Monte Carlo on hopping graph — hop.MCMC

The hop.MCMC module uses the information encoded in a hopping
graph to set up a Markov Chain Monte Carlo sampling procedure that
allows one to rapidly generate site occupancy distributions that are
distributed in the same way as the one sampled from MD.

The most convenient entry point is the hop.MCMC.run() function

M = MCMC.run(filename='hopgraph.pickle',Ntotal=<int>)

It takes as input a stored hopgraph and immediately runs an MCMC run of Ntotal
steps. The output is a MCMCsampler object. It contains the ‘trajectory’ and
useful analysis functions. (Use interactive introspection in ipython to explore
the possibilities of the object.)

Notes on the algorithm:

	some sort of dynamic lattice Monte Carlo with very simple acceptance
probabilities (0 or 1, if there’s no space on the site, and 1 if
there is)

… is ‘MCMC’ actually the proper description?

	Extension to multiply occupied sites: use the site occupancy
distributions from siteanalysis, and replace the unconditional move
by an acceptance probability == s_i(n)

	I am currently using time-forward (out-of) and time-backward (into)
site moves (the latter inspired by coupling from the past).

4.3.1.1. Classes and functions

	
class hop.MCMC.MCMCsampler(h=None, min_hops_observed=1, filename=None)

	Generate an equilibrium distribution of states from a hop graph.

Initialize the Markov Chain Monte Carlo sample with a HoppingGraph.

M = MCMCsampler(HoppingGraph)

Build a Markov Chain model from a <HoppingGraph> (with edges deleted
that have less than <min_hops_observed> hops).

	
autocorrelation(start=None, stop=None, step=None, **kwargs)

	Calculates the auto correlation function for all site trajectories.

	
averaged_autocorrelation(step=None, **kwargs)

	Calculates the ACF or each site by resampling from the whole trajectory.

mean(acf), standardev(acf) = averaged_autocorrelation(**kwargs)

	Arguments

	

	step only take every <step> from the trajectory (None == 1)

	??? step > 1 seems to take LONGER ???

length length (in frames) of the ACF (default: 1/2*len(series))
sliding_window repeat ACF calculation every N frames (default: len(series)/100)

	Returns

	

mean_acf average over all resampled acfs per site, shape = (Nsites,length)
std_acf standard deviation or the resampled acfs, shape = (Nsites,length)

See also for kwargs:

	
firstsiteindex

	State array index of the first site after bulk.

	
index2node

	Translates sequential array index to node label (in graph).

	
init_state(Nbulk=10000.0)

	Initialize state with 1 particle per standard site and Nbulk for the bulk site.

	
mean()

	Mean for each site (excl bulk).

	
mean_std()

	Returns site labels, mean, and standard deviation for each site (excl bulk).

	
node2index

	Translates node label (in graph) to the sequential array index.

	
occupancy()

	Ensemble averaged occupancy (over ALL states incl bulk) and fluctuation.

	
occupancy_mean_correl()

	Calculates the correlation coefficient between simulation and MCMC occupancies.

	
occupancy_std_correl()

	Calculates the correlation coefficient between simulation and MCMC occupancy fluctuations.

	
plot(filename=None, plot_skip=None)

	Plot density plot of the saved configurations in states[].

	
plot_correl(legend=True, **kwargs)

	Plot the occupancy from the MD simulation vs the MCMC one.

	
plot_occupancy(legend=True, **kwargs)

	Plot site label vs <N> +/- std(N).

legend True: add legend, False: return (line,description)
**kwargs additional arguments for errbar plot such as color=’k’, fmt=’o’

	
run(Ntotal=500000, Nskip=1000, verbosity=None)

	MCMC run multiple cycles of lebgth <Nskip> scans for a total of <Ntotal>.

run(Ntotal=500000,Nskip=1000)

Starts from the current configuration in state.
Creates the collection of configurations states: one state every Nskip steps

	
sample(max_iter=10000, record_iterations=True)

	Run <max_iter> Monte Carlo site moves.

sample(max_iter=10000)

Runs a batch of MCMC moves.

	
sites

	Translates sequential array index to node label (in graph).

	
statevector

	State as a numpy array; the corresponding nodes are state.keys()

	
std()

	Standard deviation for each site.

	
class hop.MCMC.MultiPscan(repeat=10, **pscanargs)

	Run Pscan(**pscanargs) <repeat> times and collect all Pscan objects in list.

pscans = MultiPscan(repeat=10, parameter=’Ntotal’, pvalues=[1e4,2.5e4,….], …)
See Pscan() for description of pscanargs.

	
class hop.MCMC.Pscan(parameter, pvalues=None, filename='hopgraph.pickle', Ntotal=1000000.0, **kwargs)

	Run a MCMC sampler for a number of parameter values.

Sample on hopping graph for different values of <parameter> = p.

P = Pscan(parameter=<string>,pvalues=<sequence>,filename=<filename>,**kwargs)

<parameter> must be a keyword argument to hop.MCMC.run();
the parameter overrides any default values that may have been
set. For instance, <parameter> can be ‘Ntotal’ or ‘filename’.

kwargs: all other kwargs are directly passed on to MCMC.run().

	
occupancy_mean_correl()

	Returns X=pvalues, Y=occupancy_mean_correlations.

	
plot_occupancy(**kwargs)

	Plot <n_i> (site occupancy from MCMC) for all parameter values.

(See _plotter())

	
plot_occupancy_mean_correl(**kwargs)

	Plot MD occupancy vs MCMC occupancy.

plot_correl(colorscale=’linear’|’log’)

(See _plotter())

	
plot_states(maxcolumns=2)

	Plot all state ‘trajectories’ as a tiled plot.

	
save(filename='pscan.pickle')

	Save pscan object to pickle file.

save(pscan.pickle)

Load with

import cPickle
myPscan = cPickle.load(open(‘pscan.pickle’))

	
hop.MCMC.multi_plot(plist, plottype='whisker', Nequil=10000, funcname='occupancy_mean_correl', **kwargs)

	Display a collection of functions.

multi_plot(plist,plottype=’whisker’,Nequil=10000,funcname=’occupancy_mean_correl’,**kwargs)

The function is obtained from a method call on the objects in plist. The
assumption is that these are functions of Ntotal (if not, set Nequil=0; Nequil is
added to x). Each object is a different realization, e.g. multiple MCMC runs.

plottype ‘whisker’ (whisker plot), ‘standard’ (average and standard deviations)
Nequil correction, added to x
funcname string; a method of the objects in plist that does EXACTLY the following:

x,y = obj.funcname()
where x and y are numpy arrays of equal length

**kwargs color, boxcolor, mediancolor, capsize

	
hop.MCMC.run(filename='hopgraph.pickle', Ntotal=500000, Nskip=1000, Nequil=10000)

	Perform Markov Chain Monte Carlo on a model derived from the hopping graph.

4.4. Auxiliary modules

	4.4.1. Constants — hop.constants

	4.4.2. Utility functions — hop.utilities

4.4.1. Constants — hop.constants

Constants that are being used throughout the hop module.

Conversions:

The conversion factor f to a unit b’ for a quantity X (whose numeric
value relative to the base unit b is stored in the program) is a
quantity with unit b’/b. In the dictionaries below only the numeric
value f(b->b’) is stored:

X/b' = f(b->b') * X/b

See also

MDAnalysis.units [https://www.mdanalysis.org/docs/documentation_pages/units.html#module-MDAnalysis.units]

4.4.1.1. Constants and functions

4.4.2. Utility functions — hop.utilities

Random mix of convenience functions that don’t fit anywhere else.

For messages I should probably use python’s logger module but this is
working so far (even though it’s pretty crappy).

	
class hop.utilities.CustomProgressMeter(numsteps, format=None, interval=10, offset=1, verbose=None, dynamic=True, format_handling='auto', quiet=None)

	ProgressMeter that uses addition ‘%(other)s’ in format string.

See also

MDAnalysis.lib.log.ProgressMeter [https://www.mdanalysis.org/docs/documentation_pages/lib/log.html#MDAnalysis.lib.log.ProgressMeter]

	
echo(step, other)

	Output status for step with additional information other.

	
class hop.utilities.DefaultDict(defaultdict, userdict=None, **kwargs)

	Dictionary based on defaults and updated with keys/values from user.

	
class hop.utilities.Fifo

	
	
pop()

	Remove and return the leftmost element.

	
class hop.utilities.IntrospectiveDict(*args, **kwargs)

	A dictionary that contains its keys as attributes for easier introspection.

Keys that collide with dict methods or attributes are _not_ added as attributes.

The implementation is simple and certainly not optimized for larger dictionaries
or ones which are often accessed. Only use it for ‘final results’ collections
that you are likely to investigate interactively.

ARGH: This cannot be pickled safely.

	
hop.utilities.Pearson_r(x, y)

	Pearson’s r (correlation coefficient)

r = Pearson(x,y)

x and y are arrays of same length

Historical note:
Naive implementation of Pearson’s r:

Ex = scipy.stats.mean(x)
Ey = scipy.stats.mean(y)

covxy = numpy.sum((x-Ex)*(y-Ey))
r = covxy/math.sqrt(numpy.sum((x-Ex)**2)*numpy.sum((y-Ey)**2))
return r

	
class hop.utilities.Ringbuffer(capacity, iterable=None)

	Ring buffer of size capacity; ‘pushes’ data from left and discards
on the right.

	
append(x)

	Add an element to the right side of the deque.

	
class hop.utilities.Saveable(*args, **kwargs)

	Baseclass that supports save()ing and load()ing.

Override the class variables

_saved_attributes = [] # list attributes to be pickled
_merge_attributes = [] # list dicts to be UPDATED from the pickled file with load(merge=True)
_excluded_attributes = [] # list attributes that should never be pickled

Note:

	_saved_attributes = ‘all’ # pickles ALL attributes, equivalent to self.__dict__.keys()

	# (use _excluded_attributes with ‘all’!)

Use _excluded_attributes to filter out some attributes such as
type(‘method-wrapper’) objects that cannot be pickled (e.g. when using properties).

	
filename(filename=None, ext=None, set_default=False, use_my_ext=False)

	Supply a file name for the object.

fn = filename() —> <default_filename>
fn = filename(‘name.ext’) —> ‘name’
fn = filename(ext=’pickle’) —> <default_filename>’.pickle’
fn = filename(‘name.inp’,’pdf’) –> ‘name.pdf’
fn = filename(‘foo.pdf’,ext=’png’,use_my_ext=True) –> ‘foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and
if provided, another extension is appended. Chooses a default if no
filename is given. Raises a ValueError exception if no default file name
is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a
default ext(tension).

	
load(filename=None, merge=False)

	Reinstantiate class from a pickled file (produced with save()).

	
save(filename=None)

	Save class to a pickled file.

	
hop.utilities.asiterable(obj)

	Return an object that is an iterable: object itself or wrapepd in a list.

iterable <– asiterable(something)

Treats strings as NOT-iterable.

	
hop.utilities.autocorrelation_fft(series, include_mean=False, periodic=False, start=None, stop=None, **kwargs)

	Calculate the auto correlation function.

acf = autocorrelation_fft(series,include_mean=False,**kwargs)

The time series is correlated with itself across its whole length. It is 0-padded
and the ACF is corrected for the 0-padding (the values for larger lags are
increased) unless mode=’valid’ (see below).
Only the [0,len(series)[interval is returned. The series is normalized to ots 0-th
element.

Note that the series for mode=’same’|’full’ is inaccurate for long times and
should probably be truncated at 1/2*len(series). Alternatively, only sample a
subseries with the stop keyword.

	Arguments

	

series (time) series, a 1D numpy array
include_mean False: subtract mean(series) from series
periodic False: corrected for 0-padding

True: return as is

	start,stop If set, calculate the ACF of series[start:stop] with series;

	in this case mode=’valid’ is enforced

	kwargs keyword arguments for scipy.signal.fftconvolve

	mode = ‘full’ | ‘same’ | ‘valid’ (see there)

	
hop.utilities.averaged_autocorrelation(series, length=None, sliding_window=None, **kwargs)

	Calculates the averaged ACF of a series.

mean(acf), std(acf) = averaged_autocorrelation(series,length=None,sliding_window=None):

Calculate the ACF of a series for only a fraction of the total length, <length> but
repeat the calculation by setting the origin progressively every <sliding_window>
steps and average over all the ACFs.

	Arguments

	

series time series (by default, mean will be removed)
length length (in frames) of the ACF (default: 1/2*len(series))
sliding_window repeat ACF calculation every N frames (default: len(series)/100)
kwargs additional arguments to autocorrelation_fft()

	
hop.utilities.close_log()

	Close open logfile; must be done manually.

	
hop.utilities.easy_load(names, baseclass, keymethod)

	Instantiate a class either from an existing instance or a pickled file.

instance_list = easy_load(names,baseclass,keymethod)

>>> x = easy_load(<filename>,Xclass,'my_method_name')
>>> [x1,x2,...] = easy_load([<filename1>, <fn2>,...], Xclass,'my_method_name')
>>> [x1,x2,...] = easy_load([x1, x2, ..], Xclass,'my_method_name')

If the argument does not implement the keymethod then try loading
from a file.

API:

For this to work, the baseclass (eg Saveable) must be able to instantiate
itself using

x = baseclass(filename=name)

If a single name is given, a singlet is returned, otherwise a list of instances.

(The docs are longer than the code…)

	
hop.utilities.fileextension(filename, default=None)

	Return the file extension without the leading dot or the default.

	
hop.utilities.filename_function(self, filename=None, ext=None, set_default=False, use_my_ext=False)

	Supply a file name for the object.

fn = filename() —> <default_filename>
fn = filename(‘name.ext’) —> ‘name’
fn = filename(ext=’pickle’) —> <default_filename>’.pickle’
fn = filename(‘name.inp’,’pdf’) –> ‘name.pdf’
fn = filename(‘foo.pdf’,ext=’png’,use_my_ext=True) –> ‘foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and
if provided, another extension is appended. Chooses a default if no
filename is given. Raises a ValueError exception if no default file name
is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a
default ext(tension).

	
hop.utilities.fixedwidth_bins(delta, xmin, xmax)

	Return bins of width delta that cover xmin,xmax (or a larger range).

dict = fixedwidth_bins(delta,xmin,xmax)

The dict contains ‘Nbins’, ‘delta’, ‘min’, and ‘max’.

	
hop.utilities.flatiter(seq)

	Returns an iterator that flattens a sequence of sequences of sequences…
(c) 2005 Peter Otten, at http://www.thescripts.com/forum/thread23631.html

	
hop.utilities.flatten(sequence) → list

	Returns a single, flat list which contains all elements retrieved
from the sequence and all recursively contained sub-sequences
(iterables).

Examples:
>>> [1, 2, [3,4], (5,6)]
[1, 2, [3, 4], (5, 6)]
>>> flatten([[[1,2,3], (42,None)], [4,5], [6], 7, MyVector(8,9,10)])
[1, 2, 3, 42, None, 4, 5, 6, 7, 8, 9, 10]

From http://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks

	
hop.utilities.iterable(obj)

	Returns True if obj can be iterated over and is NOT a string.

	
hop.utilities.linfit(x, y, dy=[])

	Fit a straight line y = a + bx to the data in x and y; errors
on y should be provided in dy in order to assess the goodness of
the fit and derive errors on the parameters.

result_dict = linfit(x,y[,dy])

Fit y = a + bx to the data in x and y by analytically minimizing
chi^2. dy holds the standard deviations of the individual y_i. If
dy is not given, they are assumed to be constant (note that in
this case Q is set to 1 and it is meaningless and chi2 is
normalised to unit standard deviation on all points!).

Returns the parameters a and b, their uncertainties sigma_a and
sigma_b, and their correlation coefficient r_ab; it also returns
the chi-squared statistic and the goodness-of-fit probability Q
(that the fit would have chi^2 this large or larger; Q < 10^-2
indicates that the model is bad — Q is the probability that a
value of chi-square as _poor_ as the calculated statistic chi2
should occur by chance.)

	result_dict =

	intercept, sigma_intercept a +/- sigma_a
slope, sigma_slope b +/- sigma_b
parameter_correlation correlation coefficient r_ab

between a and b

chi_square chi^2 test statistic
Q_fit goodness-of-fit probability

Based on ‘Numerical Recipes in C’, Ch 15.2.

	
hop.utilities.mkdir_p(path)

	Create a directory path with subdirs but do not complain if it exists.

This is like GNU mkdir -p path.

	
hop.utilities.msg(level[, m])

	1) Print message string if the level <= verbose. level describes the
priority with lower = more important.

Terminate string with n if a newline is desired or r to overwrite
the current line (eg for output progress indication)

Note that if the global verbosity level is < 0 then the message is also
written to the logfile.

2) If called without a string then msg(level) returns True if it would
print a message, and False otherwise.

	
hop.utilities.set_verbosity([level,]logfilename=<filename>)

	Set the verbosity level
level < 0 : level <- abs(level) but output is also appended to logfile
level == 0: minimum
level == 3: verbose
level > 3 : debugging

	
hop.utilities.unlink_f(path)

	Unlink path but do not complain if file does not exist.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hop	

 	
 	
 hop.analysis	

 	
 	
 hop.constants	

 	
 	
 hop.density	

 	
 	
 hop.graph	

 	
 	
 hop.interactive	

 	
 	
 hop.MCMC	

 	
 	
 hop.qhull	

 	
 	
 hop.sitemap	

 	
 	
 hop.trajectory	

 	
 	
 hop.utilities	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_xray2psf() (hop.density.PDBDensity method)

 	analyze_density() (in module hop.interactive)

 	append() (hop.utilities.Ringbuffer method)

 	args() (hop.analysis.LegendContainer method)

 	asiterable() (in module hop.utilities)

 	
 	ATOM() (hop.qhull.VertexPDBWriter method)

 	autocorrelation() (hop.MCMC.MCMCsampler method)

 	autocorrelation_fft() (in module hop.utilities)

 	averaged_autocorrelation() (hop.MCMC.MCMCsampler method)

 	(in module hop.utilities)

B

 	
 	BfactorDensityCreator (class in hop.density)

 	
 	build_hoppinggraph() (in module hop.interactive)

 	build_hoppinggraph_fromfiles() (in module hop.interactive)

C

 	
 	centers() (hop.sitemap.Grid method)

 	close_log() (in module hop.utilities)

 	CombinedGraph (class in hop.graph)

 	compute_site_occupancy() (hop.graph.HoppingGraph method)

 	(hop.graph.TransportNetwork method)

 	compute_site_times() (hop.graph.HoppingGraph method)

 	(hop.graph.TransportNetwork method)

 	
 	connectedness() (hop.graph.HoppingGraph method)

 	convert_density() (hop.sitemap.Grid method)

 	convert_length() (hop.sitemap.Grid method)

 	ConvexHull (class in hop.qhull)

 	CustomProgressMeter (class in hop.utilities)

D

 	
 	DefaultDict (class in hop.utilities)

 	Density (class in hop.sitemap)

 	Density() (hop.qhull.ConvexHull method)

 	
 	density_from_trajectory() (in module hop.density)

 	density_from_Universe() (in module hop.density)

 	DensityCollector (class in hop.density)

 	DensityScanner (class in hop.analysis)

E

 	
 	easy_load() (in module hop.utilities)

 	echo() (hop.utilities.CustomProgressMeter method)

 	equivalence_sites() (hop.density.PDBDensity method)

 	equivalent_sites_stats() (hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	export() (hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	(hop.graph.TransportNetwork method)

 	(hop.sitemap.Grid method)

 	
 	export3D() (hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	(hop.sitemap.Density method)

 	export_map() (hop.sitemap.Density method)

F

 	
 	f_factory() (hop.graph.fit_func method)

 	(hop.graph.fitExp method)

 	(hop.graph.fitExp2 method)

 	(hop.graph.fitlin method)

 	Fifo (class in hop.utilities)

 	fileextension() (in module hop.utilities)

 	filename() (hop.analysis.HeatmapAnalysis method)

 	(hop.graph.HoppingGraph method)

 	(hop.trajectory.HoppingTrajectory method)

 	(hop.trajectory.TAPtrajectory method)

 	(hop.utilities.Saveable method)

 	filename_function() (in module hop.utilities)

 	filter() (hop.graph.HoppingGraph method)

 	
 	find_common_sites() (in module hop.sitemap)

 	find_equivalence_sites_with() (hop.sitemap.Density method)

 	find_overlap_coeff() (in module hop.sitemap)

 	firstsiteindex (hop.MCMC.MCMCsampler attribute)

 	fit() (hop.graph.fit_func method)

 	fit_func (class in hop.graph)

 	fitExp (class in hop.graph)

 	fitExp2 (class in hop.graph)

 	fitlin (class in hop.graph)

 	fixedwidth_bins() (in module hop.utilities)

 	flatiter() (in module hop.utilities)

 	flatten() (in module hop.utilities)

 	from_site() (hop.graph.HoppingGraph method)

G

 	
 	generate_densities() (in module hop.interactive)

 	
 	graph_alltransitions() (hop.graph.TransportNetwork method)

 	Grid (class in hop.sitemap)

H

 	
 	has_bulk() (hop.sitemap.Density method)

 	HeatmapAnalysis (class in hop.analysis)

 	hop.analysis (module)

 	hop.constants (module)

 	hop.density (module)

 	hop.graph (module)

 	hop.interactive (module)

 	hop.MCMC (module)

 	
 	hop.qhull (module)

 	hop.sitemap (module)

 	hop.trajectory (module)

 	hop.utilities (module)

 	hopgraph_basic_analysis() (in module hop.interactive)

 	HopgraphAnalysis (class in hop.analysis)

 	HoppingGraph (class in hop.graph)

 	HoppingGraph() (hop.graph.TransportNetwork method)

 	HoppingTrajectory (class in hop.trajectory)

I

 	
 	importdx() (hop.sitemap.Grid method)

 	index2node (hop.MCMC.MCMCsampler attribute)

 	init_state() (hop.MCMC.MCMCsampler method)

 	initial_values() (hop.graph.fit_func method)

 	(hop.graph.fitExp method)

 	(hop.graph.fitExp2 method)

 	(hop.graph.fitlin method)

 	internal_sites() (hop.graph.HoppingGraph method)

 	
 	IntrospectiveDict (class in hop.utilities)

 	is_connected() (hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	is_from_bulk() (hop.graph.HoppingGraph method)

 	is_internal() (hop.graph.HoppingGraph method)

 	is_isolated() (hop.graph.HoppingGraph method)

 	isolated_sites() (hop.graph.HoppingGraph method)

 	iterable() (in module hop.utilities)

K

 	
 	kill_R() (in module hop.analysis)

L

 	
 	labels() (hop.analysis.HeatmapAnalysis method)

 	LegendContainer (class in hop.analysis)

 	linfit() (in module hop.utilities)

 	
 	load() (hop.analysis.DensityScanner method)

 	(hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	(hop.utilities.Saveable method)

M

 	
 	make_density() (hop.sitemap.Grid method)

 	(in module hop.interactive)

 	make_hoppingtraj() (in module hop.interactive)

 	make_xstal_density() (in module hop.interactive)

 	map_dcd() (hop.trajectory.HoppingTrajectory method)

 	(hop.trajectory.TAPtrajectory method)

 	map_hilo() (hop.sitemap.Density method)

 	map_sites() (hop.sitemap.Density method)

 	
 	masked_density() (hop.sitemap.Density method)

 	MCMCsampler (class in hop.MCMC)

 	mean() (hop.MCMC.MCMCsampler method)

 	mean_std() (hop.MCMC.MCMCsampler method)

 	mkdir_p() (in module hop.utilities)

 	msg() (in module hop.utilities)

 	multi_plot() (in module hop.MCMC)

 	MultiPscan (class in hop.MCMC)

N

 	
 	next() (hop.trajectory.HoppingTrajectory method)

 	(hop.trajectory.TAPtrajectory method)

 	
 	node2index (hop.MCMC.MCMCsampler attribute)

 	normalize() (hop.analysis.HeatmapAnalysis method)

 	number_of_hops() (hop.graph.HoppingGraph method)

O

 	
 	occupancy() (hop.MCMC.MCMCsampler method)

 	occupancy_mean_correl() (hop.MCMC.MCMCsampler method)

 	(hop.MCMC.Pscan method)

 	
 	occupancy_std_correl() (hop.MCMC.MCMCsampler method)

P

 	
 	PDBDensity (class in hop.density)

 	PDBDensity() (hop.density.BfactorDensityCreator method)

 	Pearson_r() (in module hop.utilities)

 	plot() (hop.analysis.DensityScanner method)

 	(hop.MCMC.MCMCsampler method)

 	(hop.analysis.HeatmapAnalysis method)

 	(hop.graph.CombinedGraph method)

 	plot_correl() (hop.MCMC.MCMCsampler method)

 	plot_fits() (hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	plot_occupancy() (hop.MCMC.MCMCsampler method)

 	(hop.MCMC.Pscan method)

 	
 	plot_occupancy_mean_correl() (hop.MCMC.Pscan method)

 	plot_residency_times() (hop.graph.TransportNetwork method)

 	plot_site_occupancy() (hop.graph.TransportNetwork method)

 	plot_states() (hop.MCMC.Pscan method)

 	point_inside() (hop.qhull.ConvexHull method)

 	points_from_selection() (in module hop.qhull)

 	points_inside() (hop.qhull.ConvexHull method)

 	pop() (hop.utilities.Fifo method)

 	print_combined_equivalence_sites() (in module hop.density)

 	Pscan (class in hop.MCMC)

R

 	
 	rate() (hop.graph.HoppingGraph method)

 	rates() (hop.graph.HoppingGraph method)

 	read_planes() (hop.qhull.ConvexHull method)

 	read_vertices() (hop.qhull.ConvexHull method)

 	remap_density() (in module hop.sitemap)

 	
 	REMARK() (hop.qhull.VertexPDBWriter method)

 	remove_equivalence_sites() (hop.sitemap.Density method)

 	Ringbuffer (class in hop.utilities)

 	run() (hop.MCMC.MCMCsampler method)

 	(in module hop.MCMC)

S

 	
 	sample() (hop.MCMC.MCMCsampler method)

 	save() (hop.graph.HoppingGraph method)

 	(hop.MCMC.Pscan method)

 	(hop.utilities.Saveable method)

 	Saveable (class in hop.utilities)

 	select_graph() (hop.graph.HoppingGraph method)

 	set_verbosity() (in module hop.utilities)

 	show_rates() (hop.graph.HoppingGraph method)

 	show_site() (hop.graph.HoppingGraph method)

 	show_total_rates() (hop.graph.HoppingGraph method)

 	site2resid() (hop.density.PDBDensity method)

 	site_insert_bulk() (hop.sitemap.Density method)

 	site_insert_nobulk() (hop.density.PDBDensity method)

 	(hop.sitemap.Density method)

 	
 	site_labels() (hop.sitemap.Density method)

 	site_occupancy() (hop.sitemap.Density method)

 	site_properties (hop.graph.CombinedGraph attribute)

 	(hop.graph.HoppingGraph attribute)

 	site_remove_bulk() (hop.sitemap.Density method)

 	site_volume() (hop.sitemap.Density method)

 	sites (hop.MCMC.MCMCsampler attribute)

 	statevector (hop.MCMC.MCMCsampler attribute)

 	stats() (hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	(hop.sitemap.Density method)

 	std() (hop.MCMC.MCMCsampler method)

 	subsites_of() (hop.sitemap.Density method)

 	survivalfunction() (in module hop.graph)

T

 	
 	tabulate_k() (hop.graph.CombinedGraph method)

 	(hop.graph.HoppingGraph method)

 	TAPtrajectory (class in hop.trajectory)

 	ThinDCDReader (class in hop.trajectory)

 	
 	TITLE() (hop.qhull.VertexPDBWriter method)

 	to_site() (hop.graph.HoppingGraph method)

 	TransportNetwork (class in hop.graph)

 	ts (hop.trajectory.HoppingTrajectory attribute)

U

 	
 	unique_tuplelist() (in module hop.sitemap)

 	
 	Unitstep() (in module hop.graph)

 	unlink_f() (in module hop.utilities)

V

 	
 	VertexPDBWriter (class in hop.qhull)

 	
 	visualize_density() (in module hop.interactive)

W

 	
 	W() (hop.density.PDBDensity method)

 	waitingtime_fit() (hop.graph.HoppingGraph method)

 	wd() (hop.qhull.ConvexHull method)

 	Wequiv() (hop.density.PDBDensity method)

 	write() (hop.qhull.VertexPDBWriter method)

 	(hop.trajectory.HoppingTrajectory method)

 	(hop.trajectory.TAPtrajectory method)

 	
 	write_coordinates() (in module hop.qhull)

 	write_psf() (hop.graph.HoppingGraph method)

 	(hop.trajectory.HoppingTrajectory method)

README

This is a collection of python modules to analyze (primarily) water
behaviour in MD simulations. The idea is to find regions with a
density above a given threshold (hydration sites) and catalogue those
sites. Once this is done, one can analyze water movement in terms of
hops between those sites. The complicated solvation dynamics is thus
represented as a graph in which hydration sites are the nodes (or
vertices) and movements between sites are the edges.

Of course, it is also possible to look at the movement of other
particles such as ions or small molecules — one simply selects a
different species.

The package is called ‘Hop’ (no clever acronym, just quick to type,
and reflecting the fact that a “hopping analysis” is performed).

Hop requires MDAnalysis [https://www.mdanalysis.org].

 _static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Hop: analyzing solvent in molecular dynamics trajectories

 		
 Installation

 		
 Source installation

 		
 Conda

 		
 Background

 		
 Quickstart: using the hop package — hop.interactive

 		
 Hydration sites

 		
 High density sites

 		
 Bulk site

 		
 Remapping for comparing site maps

 		
 Hopping trajectory

 		
 Hopping graph

 		
 Other topics

 		
 Functions

 		
 Hop package — hop

 		
 Generating a hopping graph

 		
 Defining solvation sites — hop.sitemap

 		
 Generating densities from trajectories — hop.density

 		
 Using qhull to define regions for hopping analysis — hop.qhull

 		
 Generating the hopping trajectory — hop.trajectory

 		
 Generating and analyzing a hopping graph — hop.graph

 		
 Analyzing hopping graphs and densities

 		
 Extracting information from densities and hop graphs — hop.analysis

 		
 Generating densities from trajectories — hop.density

 		
 Markov Chain Monte Carlo sampling on a hop graph

 		
 Markov Chain Monte Carlo on hopping graph — hop.MCMC

 		
 Auxiliary modules

 		
 Constants — hop.constants

 		
 Utility functions — hop.utilities

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/logos/mdanalysis-logo-200x150.png
¥
s ANALYSIS
)

_static/up-pressed.png

